medalpaca-13B-GPTQ / README.md
TheBloke's picture
Update README.md
7721f01
|
raw
history blame
10.3 kB
---
license: cc
language:
- en
library_name: transformers
pipeline_tag: text-generation
tags:
- medical
inference: false
---
<!-- header start -->
<div style="width: 100%;">
<img src="https://i.imgur.com/EBdldam.jpg" alt="TheBlokeAI" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
<div style="display: flex; justify-content: space-between; width: 100%;">
<div style="display: flex; flex-direction: column; align-items: flex-start;">
<p><a href="https://discord.gg/Jq4vkcDakD">Chat & support: my new Discord server</a></p>
</div>
<div style="display: flex; flex-direction: column; align-items: flex-end;">
<p><a href="https://www.patreon.com/TheBlokeAI">Want to contribute? TheBloke's Patreon page</a></p>
</div>
</div>
<!-- header end -->
# medalpaca-13B GPTQ 4bit
This is a [GPTQ-for-LLaMa](https://github.com/qwopqwop200/GPTQ-for-LLaMa) 4bit quantisation of [medalpaca-13b](https://huggingface.co/medalpaca/medalpaca-13b).
## GIBBERISH OUTPUT IN `text-generation-webui`?
Please read the Provided Files section below. You should use `medalpaca-13B-GPTQ-4bit-128g.no-act-order.safetensors` unless you are able to use the latest Triton branch of GPTQ-for-LLaMa.
## How to easily download and use this model in text-generation-webui
Open the text-generation-webui UI as normal.
1. Click the **Model tab**.
2. Under **Download custom model or LoRA**, enter `TheBloke/medalpaca-13B-GPTQ-4bit`.
3. Click **Download**.
4. Wait until it says it's finished downloading.
5. Click the **Refresh** icon next to **Model** in the top left.
6. In the **Model drop-down**: choose the model you just downloaded,`medalpaca-13B-GPTQ-4bit`.
7. If you see an error in the bottom right, ignore it - it's temporary.
8. Fill out the `GPTQ parameters` on the right: `Bits = 4`, `Groupsize = 128`, `model_type = Llama`
9. Click **Save settings for this model** in the top right.
10. Click **Reload the Model** in the top right.
11. Once it says it's loaded, click the **Text Generation tab** and enter a prompt!
## Provided files
Two files are provided. **The second file will not work unless you use a recent version of the Triton branch of GPTQ-for-LLaMa**
Specifically, the second file uses `--act-order` for maximum quantisation quality and will not work with oobabooga's fork of GPTQ-for-LLaMa. Therefore at this time it will also not work with the CUDA branch of GPTQ-for-LLaMa, or `text-generation-webui` one-click installers.
Unless you are able to use the latest GPTQ-for-LLaMa code, please use `medalpaca-13B-GPTQ-4bit-128g.no-act-order.safetensors`
* `medalpaca-13B-GPTQ-4bit-128g.no-act-order.safetensors`
* Works with all versions of GPTQ-for-LLaMa code, both Triton and CUDA branches
* Works with text-generation-webui one-click-installers
* Works on Windows
* Parameters: Groupsize = 128g. No act-order.
* Command used to create the GPTQ:
```
CUDA_VISIBLE_DEVICES=0 python3 llama.py medalpaca-13b c4 --wbits 4 --true-sequential --groupsize 128 --save_safetensors medalpaca-13B-GPTQ-4bit-128g.no-act-order.safetensors
```
* `medalpaca-13B-GPTQ-4bit-128g.safetensors`
* Only works with the latest Triton branch of GPTQ-for-LLaMa
* **Does not** work with text-generation-webui one-click-installers
* **Does not** work on Windows
* Parameters: Groupsize = 128g. act-order.
* Offers highest quality quantisation, but requires recent GPTQ-for-LLaMa code
* Command used to create the GPTQ:
```
CUDA_VISIBLE_DEVICES=0 python3 llama.py medalpaca-13b c4 --wbits 4 --true-sequential --act-order --groupsize 128 --save_safetensors medalpaca-13B-GPTQ-4bit-128g.safetensors
```
## How to run in `text-generation-webui`
File `medalpaca-13B-GPTQ-4bit-128g.no-act-order.safetensors` can be loaded the same as any other GPTQ file, without requiring any updates to [oobaboogas text-generation-webui](https://github.com/oobabooga/text-generation-webui).
[Instructions on using GPTQ 4bit files in text-generation-webui are here](https://github.com/oobabooga/text-generation-webui/wiki/GPTQ-models-\(4-bit-mode\)).
The other `safetensors` model file was created with the latest GPTQ code, and uses `--act-order` to give the maximum possible quantisation quality, but this means it requires that the latest GPTQ-for-LLaMa is used inside the UI.
If you want to use the act-order `safetensors` file and need to update the Triton branch of GPTQ-for-LLaMa, here are the commands I used to clone the Triton branch of GPTQ-for-LLaMa, clone text-generation-webui, and install GPTQ into the UI:
```
# Clone text-generation-webui, if you don't already have it
git clone https://github.com/oobabooga/text-generation-webui
# Make a repositories directory
mkdir text-generation-webui/repositories
cd text-generation-webui/repositories
# Clone the latest GPTQ-for-LLaMa code inside text-generation-webui
git clone https://github.com/qwopqwop200/GPTQ-for-LLaMa
```
Then install this model into `text-generation-webui/models` and launch the UI as follows:
```
cd text-generation-webui
python server.py --model medalpaca-13B-GPTQ-4bit --wbits 4 --groupsize 128 --model_type Llama # add any other command line args you want
```
The above commands assume you have installed all dependencies for GPTQ-for-LLaMa and text-generation-webui. Please see their respective repositories for further information.
If you can't update GPTQ-for-LLaMa to the latest Triton branch, or don't want to, you can use `medalpaca-13B-GPTQ-4bit-128g.no-act-order.safetensors` as mentioned above, which should work without any upgrades to text-generation-webui.
<!-- footer start -->
## Discord
For further support, and discussions on these models and AI in general, join us at:
[TheBloke AI's Discord server](https://discord.gg/Jq4vkcDakD)
## Thanks, and how to contribute.
Thanks to the [chirper.ai](https://chirper.ai) team!
I've had a lot of people ask if they can contribute. I enjoy providing models and helping people, and would love to be able to spend even more time doing it, as well as expanding into new projects like fine tuning/training.
If you're able and willing to contribute it will be most gratefully received and will help me to keep providing more models, and to start work on new AI projects.
Donaters will get priority support on any and all AI/LLM/model questions and requests, access to a private Discord room, plus other benefits.
* Patreon: https://patreon.com/TheBlokeAI
* Ko-Fi: https://ko-fi.com/TheBlokeAI
**Patreon special mentions**: Aemon Algiz, Dmitriy Samsonov, Nathan LeClaire, Trenton Dambrowitz, Mano Prime, David Flickinger, vamX, Nikolai Manek, senxiiz, Khalefa Al-Ahmad, Illia Dulskyi, Jonathan Leane, Talal Aujan, V. Lukas, Joseph William Delisle, Pyrater, Oscar Rangel, Lone Striker, Luke Pendergrass, Eugene Pentland, Sebastain Graf, Johann-Peter Hartman.
Thank you to all my generous patrons and donaters!
<!-- footer end -->
# Original model card: MedAlpaca 13b
## Table of Contents
[Model Description](#model-description)
- [Architecture](#architecture)
- [Training Data](#trainig-data)
[Model Usage](#model-usage)
[Limitations](#limitations)
## Model Description
### Architecture
`medalpaca-13b` is a large language model specifically fine-tuned for medical domain tasks.
It is based on LLaMA (Large Language Model Meta AI) and contains 13 billion parameters.
The primary goal of this model is to improve question-answering and medical dialogue tasks.
### Training Data
The training data for this project was sourced from various resources.
Firstly, we used Anki flashcards to automatically generate questions,
from the front of the cards and anwers from the back of the card.
Secondly, we generated medical question-answer pairs from [Wikidoc](https://www.wikidoc.org/index.php/Main_Page).
We extracted paragraphs with relevant headings, and used Chat-GPT 3.5
to generate questions from the headings and using the corresponding paragraphs
as answers. This dataset is still under development and we believe
that approximately 70% of these question answer pairs are factual correct.
Thirdly, we used StackExchange to extract question-answer pairs, taking the
top-rated question from five categories: Academia, Bioinformatics, Biology,
Fitness, and Health. Additionally, we used a dataset from [ChatDoctor](https://arxiv.org/abs/2303.14070)
consisting of 200,000 question-answer pairs, available at https://github.com/Kent0n-Li/ChatDoctor.
| Source | n items |
|------------------------------|--------|
| ChatDoc large | 200000 |
| wikidoc | 67704 |
| Stackexchange academia | 40865 |
| Anki flashcards | 33955 |
| Stackexchange biology | 27887 |
| Stackexchange fitness | 9833 |
| Stackexchange health | 7721 |
| Wikidoc patient information | 5942 |
| Stackexchange bioinformatics | 5407 |
## Model Usage
To evaluate the performance of the model on a specific dataset, you can use the Hugging Face Transformers library's built-in evaluation scripts. Please refer to the evaluation guide for more information.
Inference
You can use the model for inference tasks like question-answering and medical dialogues using the Hugging Face Transformers library. Here's an example of how to use the model for a question-answering task:
```python
from transformers import pipeline
qa_pipeline = pipeline("question-answering", model="medalpaca/medalpaca-7b", tokenizer="medalpaca/medalpaca-7b")
question = "What are the symptoms of diabetes?"
context = "Diabetes is a metabolic disease that causes high blood sugar. The symptoms include increased thirst, frequent urination, and unexplained weight loss."
answer = qa_pipeline({"question": question, "context": context})
print(answer)
```
## Limitations
The model may not perform effectively outside the scope of the medical domain.
The training data primarily targets the knowledge level of medical students,
which may result in limitations when addressing the needs of board-certified physicians.
The model has not been tested in real-world applications, so its efficacy and accuracy are currently unknown.
It should never be used as a substitute for a doctor's opinion and must be treated as a research tool only.