YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

EconBERTa - RoBERTa further trained for 25k steps (T=512, batch_size = 256) on text sourced from economics books.

Example usage for MLM:

from transformers import RobertaTokenizer, RobertaForMaskedLM
from transformers import pipeline

tokenizer = RobertaTokenizer.from_pretrained('roberta-base')
model = RobertaForMaskedLM.from_pretrained('models').cpu()
model.eval()
mlm = pipeline('fill-mask', model = model, tokenizer  = tokenizer)
test = "ECB - euro, FED - <mask>, BoJ - yen"
print(mlm(test)[:2])

[{'sequence': 'ECB - euro, FED - dollar, BoJ - yen',
  'score': 0.7342271208763123,
  'token': 1404,
  'token_str': ' dollar'},
 {'sequence': 'ECB - euro, FED - dollars, BoJ - yen',
  'score': 0.10828445851802826,
  'token': 1932,
  'token_str': ' dollars'}]
Downloads last month
9
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.