metadata
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- common_voice_9_0
metrics:
- wer
model-index:
- name: cv9-special-batch12-lr6-small
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_9_0
type: common_voice_9_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 14.345525649873474
cv9-special-batch12-lr6-small
This model is a fine-tuned version of openai/whisper-small on the common_voice_9_0 dataset. It achieves the following results on the evaluation set:
- Loss: 0.2595
- Wer: 14.3455
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-06
- train_batch_size: 12
- eval_batch_size: 6
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
0.3456 | 1.45 | 1000 | 0.2877 | 16.0571 |
0.2388 | 2.9 | 2000 | 0.2658 | 15.0449 |
0.2224 | 4.35 | 3000 | 0.2610 | 14.4145 |
0.1881 | 5.81 | 4000 | 0.2589 | 14.3869 |
0.1783 | 7.26 | 5000 | 0.2595 | 14.3455 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3