TheRains's picture
update model card README.md
250204d
|
raw
history blame
2.01 kB
---
license: apache-2.0
base_model: openai/whisper-small
tags:
- generated_from_trainer
datasets:
- common_voice_9_0
metrics:
- wer
model-index:
- name: cv9-special-batch8-small-concat-Fleur
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: common_voice_9_0
type: common_voice_9_0
config: id
split: test
args: id
metrics:
- name: Wer
type: wer
value: 11.893259719346675
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# cv9-special-batch8-small-concat-Fleur
This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the common_voice_9_0 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.2497
- Wer: 11.8933
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
### Training results
| Training Loss | Epoch | Step | Validation Loss | Wer |
|:-------------:|:-----:|:----:|:---------------:|:-------:|
| 0.2987 | 0.72 | 1000 | 0.2596 | 15.1369 |
| 0.1152 | 1.43 | 2000 | 0.2372 | 12.6110 |
| 0.0544 | 2.15 | 3000 | 0.2356 | 12.0819 |
| 0.0431 | 2.86 | 4000 | 0.2370 | 11.9531 |
| 0.0176 | 3.58 | 5000 | 0.2497 | 11.8933 |
### Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3