metadata
license: apache-2.0
base_model: openai/whisper-base
tags:
- generated_from_trainer
datasets:
- mozilla-foundation/common_voice_9_0
metrics:
- wer
model-index:
- name: yt-special-batch8-base
results:
- task:
name: Automatic Speech Recognition
type: automatic-speech-recognition
dataset:
name: mozilla-foundation/common_voice_9_0 id
type: mozilla-foundation/common_voice_9_0
config: id
split: train
args: id
metrics:
- name: Wer
type: wer
value: 11.4438961596224
yt-special-batch8-base
This model is a fine-tuned version of openai/whisper-base on the mozilla-foundation/common_voice_9_0 id dataset. It achieves the following results on the evaluation set:
- Loss: 0.4155
- Wer: 11.4439
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 1e-05
- train_batch_size: 8
- eval_batch_size: 4
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 500
- training_steps: 5000
Training results
Training Loss | Epoch | Step | Validation Loss | Wer |
---|---|---|---|---|
41.113 | 1.58 | 1000 | 42.9759 | 107.5628 |
17.3442 | 3.17 | 2000 | 18.7037 | 144.1064 |
10.8061 | 4.75 | 3000 | 7.1531 | 52.5510 |
3.3269 | 6.34 | 4000 | 3.1035 | 47.0586 |
0.7405 | 7.92 | 5000 | 0.4155 | 11.4439 |
Framework versions
- Transformers 4.31.0.dev0
- Pytorch 2.0.1+cu117
- Datasets 2.13.1
- Tokenizers 0.13.3