ThreeBlessings's picture
Upload model
02f258c
metadata
license: apache-2.0
library_name: peft
tags:
  - generated_from_trainer
datasets:
  - marsyas/gtzan
metrics:
  - accuracy
base_model: ntu-spml/distilhubert
model-index:
  - name: distilhubert-finetuned-gtzan
    results:
      - task:
          type: audio-classification
          name: Audio Classification
        dataset:
          name: GTZAN
          type: marsyas/gtzan
          split: None
        metrics:
          - type: accuracy
            value: 0.9319319319319319
            name: Accuracy

distilhubert-finetuned-gtzan

This model is a fine-tuned version of ntu-spml/distilhubert on the GTZAN dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2387
  • Accuracy: 0.9319

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.001
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy
1.7644 1.0 167 1.7832 0.3554
1.2856 2.0 334 1.4226 0.4745
1.2123 3.0 501 1.0047 0.6737
0.6613 4.0 668 0.8091 0.6987
0.6442 5.0 835 0.6713 0.7858
0.7172 6.0 1002 0.5749 0.8238
0.5394 7.0 1169 0.5079 0.8408
0.3853 8.0 1336 0.4574 0.8539
0.5441 9.0 1503 0.3729 0.8869
0.5062 10.0 1670 0.3319 0.9009
0.3955 11.0 1837 0.3745 0.8849
0.3112 12.0 2004 0.2752 0.9289
0.2887 13.0 2171 0.2544 0.9289
0.2038 14.0 2338 0.2344 0.9329
0.2374 15.0 2505 0.2387 0.9319

Framework versions

  • Transformers 4.35.2
  • Pytorch 2.1.1+cu121
  • Datasets 2.15.0
  • Tokenizers 0.15.0

Training procedure

Framework versions

  • PEFT 0.6.2