|
--- |
|
license: mit |
|
library_name: peft |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
datasets: |
|
- FinGPT/fingpt-sentiment-train |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
[<img src="https://raw.githubusercontent.com/OpenAccess-AI-Collective/axolotl/main/image/axolotl-badge-web.png" alt="Built with Axolotl" width="200" height="32"/>](https://github.com/OpenAccess-AI-Collective/axolotl) |
|
<details><summary>See axolotl config</summary> |
|
|
|
axolotl version: `0.4.0` |
|
|
|
```yaml |
|
base_model: mistralai/Mistral-7B-v0.1 |
|
model_type: MistralForCausalLM |
|
tokenizer_type: LlamaTokenizergin |
|
is_mistral_derived_model: true |
|
|
|
load_in_8bit: false |
|
load_in_4bit: false |
|
strict: false |
|
|
|
datasets: |
|
# This will be the path used for the data when it is saved to the Volume in the cloud. |
|
- path: data.jsonl |
|
ds_type: json |
|
type: |
|
# JSONL file contains question, context, answer fields per line. |
|
# This gets mapped to instruction, input, output axolotl tags. |
|
field_instruction: instruction |
|
field_input: input |
|
field_output: output |
|
# Format is used by axolotl to generate the prompt. |
|
format: |- |
|
[INST]{input} |
|
{instruction} [/INST] |
|
|
|
dataset_prepared_path: |
|
val_set_size: 0.05 |
|
output_dir: ./lora-out |
|
|
|
sequence_len: 4096 |
|
sample_packing: false |
|
eval_sample_packing: false |
|
pad_to_sequence_len: false |
|
|
|
adapter: lora |
|
lora_model_dir: |
|
lora_r: 16 |
|
lora_alpha: 32 |
|
lora_dropout: 0.05 |
|
lora_target_linear: true |
|
lora_fan_in_fan_out: |
|
|
|
wandb_project: |
|
wandb_entity: |
|
wandb_watch: |
|
wandb_run_id: |
|
|
|
gradient_accumulation_steps: 1 |
|
micro_batch_size: 32 |
|
num_epochs: 4 |
|
optimizer: adamw_torch |
|
lr_scheduler: cosine |
|
learning_rate: 0.0001 |
|
|
|
bf16: auto |
|
fp16: false |
|
tf32: false |
|
train_on_inputs: false |
|
group_by_length: false |
|
|
|
gradient_checkpointing: true |
|
early_stopping_patience: |
|
resume_from_checkpoint: |
|
local_rank: |
|
logging_steps: 1 |
|
xformers_attention: |
|
flash_attention: true |
|
|
|
warmup_steps: 10 |
|
save_steps: |
|
debug: |
|
deepspeed: /root/axolotl/deepspeed_configs/zero3_bf16.json |
|
weight_decay: 0.0 |
|
fsdp: |
|
fsdp_config: |
|
special_tokens: |
|
bos_token: "<s>" |
|
eos_token: "</s>" |
|
unk_token: "<unk>" |
|
|
|
``` |
|
|
|
</details><br> |
|
|
|
# Mistral Sentiment Analysis |
|
|
|
This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the [FinGPT Sentiment](https://huggingface.co/datasets/FinGPT/fingpt-sentiment-train) dataset. It is intended to be used for sentiment analysis tasks for financial data. Data was modified to use with Axolotl, see [here](https://github.com/TimeSurgeLabs/llm-finetuning/blob/02fee020a21917d91719da6db25a4f4384ae9a0a/data/fingpt-sentiment.jsonl) for the modified data. See the [FinGPT Project](https://github.com/AI4Finance-Foundation/FinGPT) for more information. |
|
It achieves the following results on the evaluation set: |
|
* Loss: 0.1598 |
|
|
|
## Ollama Example |
|
|
|
```bash |
|
ollama run chand1012/mistral_sentiment |
|
>>> Apple (NASDAQ:AAPL) Up Fractionally despite Rising Vision Pro Returns Please choose an answer from {negative/neutral/positive} |
|
positive |
|
``` |
|
|
|
## Python Example |
|
|
|
```python |
|
from transformers import AutoModel, AutoTokenizer, AutoModelForCausalLM, LlamaForCausalLM, LlamaTokenizerFast |
|
from peft import PeftModel # 0.8.2 |
|
|
|
# Load Models |
|
base_model = "mistralai/Mistral-7B-v0.1" |
|
peft_model = "TimeSurgeLabs/mistral_sentiment_lora" |
|
tokenizer = LlamaTokenizerFast.from_pretrained(base_model, trust_remote_code=True) |
|
tokenizer.pad_token = tokenizer.eos_token |
|
model = LlamaForCausalLM.from_pretrained(base_model, trust_remote_code=True, device_map = "cuda:0", load_in_8bit = True,) |
|
model = PeftModel.from_pretrained(model, peft_model) |
|
model = model.eval() |
|
|
|
# Make prompts |
|
prompt = [ |
|
'''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} |
|
Input: FINANCING OF ASPOCOMP 'S GROWTH Aspocomp is aggressively pursuing its growth strategy by increasingly focusing on technologically more demanding HDI printed circuit boards PCBs . |
|
Answer: ''', |
|
'''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} |
|
Input: According to Gran , the company has no plans to move all production to Russia , although that is where the company is growing . |
|
Answer: ''', |
|
'''Instruction: What is the sentiment of this news? Please choose an answer from {negative/neutral/positive} |
|
Input: A tinyurl link takes users to a scamming site promising that users can earn thousands of dollars by becoming a Google ( NASDAQ : GOOG ) Cash advertiser . |
|
Answer: ''', |
|
] |
|
|
|
# Generate results |
|
tokens = tokenizer(prompt, return_tensors='pt', padding=True, max_length=512) |
|
res = model.generate(**tokens, max_length=512) |
|
res_sentences = [tokenizer.decode(i) for i in res] |
|
out_text = [o.split("Answer: ")[1] for o in res_sentences] |
|
|
|
# show results |
|
for sentiment in out_text: |
|
print(sentiment) |
|
|
|
# Output: |
|
# positive |
|
# neutral |
|
# negative |
|
``` |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
* learning_rate: 0.0001 |
|
* train_batch_size: 32 |
|
* eval_batch_size: 32 |
|
* seed: 42 |
|
* distributed_type: multi-GPU |
|
* num_devices: 2 |
|
* total_train_batch_size: 64 |
|
* total_eval_batch_size: 64 |
|
* optimizer: Adam with betas=(0.9, 0.999) and epsilon=1e-08 |
|
* lr_scheduler_type: cosine |
|
* lr_scheduler_warmup_steps: 10 |
|
* num_epochs: 4 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | |
|
|:-------------:|:-----:|:----:|:---------------:| |
|
| 0.0678 | 1.0 | 1140 | 0.1124 | |
|
| 0.1339 | 2.0 | 2280 | 0.1008 | |
|
| 0.0497 | 3.0 | 3420 | 0.1146 | |
|
| 0.0016 | 4.0 | 4560 | 0.1598 | |
|
|
|
### Framework versions |
|
|
|
* PEFT 0.8.2 |
|
* Transformers 4.38.0.dev0 |
|
* Pytorch 2.1.2+cu121 |
|
* Datasets 2.17.0 |
|
* Tokenizers 0.15.0 |
|
|