leaderboard-pr-bot's picture
Adding Evaluation Results
526c80b verified
|
raw
history blame
6.33 kB
metadata
language:
  - en
license: apache-2.0
datasets:
  - cerebras/SlimPajama-627B
  - bigcode/starcoderdata
  - HuggingFaceH4/ultrachat_200k
  - HuggingFaceH4/ultrafeedback_binarized
widget:
  - example_title: Fibonacci (Python)
    messages:
      - role: system
        content: You are a chatbot who can help code!
      - role: user
        content: >-
          Write me a function to calculate the first 10 digits of the fibonacci
          sequence in Python and print it out to the CLI.
model-index:
  - name: TinyLlama-1.1B-Chat-v1.0
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 5.96
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 4.01
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0.83
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 0
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.31
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 1.12
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=TinyLlama/TinyLlama-1.1B-Chat-v1.0
          name: Open LLM Leaderboard

TinyLlama-1.1B

https://github.com/jzhang38/TinyLlama

The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs ๐Ÿš€๐Ÿš€. The training has started on 2023-09-01.

We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.

This Model

This is the chat model finetuned on top of TinyLlama/TinyLlama-1.1B-intermediate-step-1431k-3T. We follow HF's Zephyr's training recipe. The model was " initially fine-tuned on a variant of the UltraChat dataset, which contains a diverse range of synthetic dialogues generated by ChatGPT. We then further aligned the model with ๐Ÿค— TRL's DPOTrainer on the openbmb/UltraFeedback dataset, which contain 64k prompts and model completions that are ranked by GPT-4."

How to use

You will need the transformers>=4.34 Do check the TinyLlama github page for more information.

# Install transformers from source - only needed for versions <= v4.34
# pip install git+https://github.com/huggingface/transformers.git
# pip install accelerate

import torch
from transformers import pipeline

pipe = pipeline("text-generation", model="TinyLlama/TinyLlama-1.1B-Chat-v1.0", torch_dtype=torch.bfloat16, device_map="auto")

# We use the tokenizer's chat template to format each message - see https://huggingface.co/docs/transformers/main/en/chat_templating
messages = [
    {
        "role": "system",
        "content": "You are a friendly chatbot who always responds in the style of a pirate",
    },
    {"role": "user", "content": "How many helicopters can a human eat in one sitting?"},
]
prompt = pipe.tokenizer.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
outputs = pipe(prompt, max_new_tokens=256, do_sample=True, temperature=0.7, top_k=50, top_p=0.95)
print(outputs[0]["generated_text"])
# <|system|>
# You are a friendly chatbot who always responds in the style of a pirate.</s>
# <|user|>
# How many helicopters can a human eat in one sitting?</s>
# <|assistant|>
# ...

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 2.71
IFEval (0-Shot) 5.96
BBH (3-Shot) 4.01
MATH Lvl 5 (4-Shot) 0.83
GPQA (0-shot) 0.00
MuSR (0-shot) 4.31
MMLU-PRO (5-shot) 1.12