File size: 2,646 Bytes
26cf1e7 518fbcf 26cf1e7 518fbcf 26cf1e7 518fbcf 26cf1e7 518fbcf 26cf1e7 518fbcf 26cf1e7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 |
---
tags:
- generated_from_trainer
model-index:
- name: kobigbird-bert-base-finetuned-klue
results: []
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# kobigbird-bert-base-finetuned-klue
This model is a fine-tuned version of [monologg/kobigbird-bert-base](https://huggingface.co/monologg/kobigbird-bert-base) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 0.8347
## Model description
More information needed
## Intended uses & limitations
More information needed
## Training and evaluation data
More information needed
## Training procedure
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 20
### Training results
| Training Loss | Epoch | Step | Validation Loss |
|:-------------:|:-----:|:-----:|:---------------:|
| 5.3957 | 0.13 | 500 | 3.7603 |
| 3.2242 | 0.26 | 1000 | 2.3961 |
| 2.0812 | 0.4 | 1500 | 1.5552 |
| 1.6198 | 0.53 | 2000 | 1.3609 |
| 1.447 | 0.66 | 2500 | 1.2270 |
| 1.3438 | 0.79 | 3000 | 1.1321 |
| 1.2399 | 0.93 | 3500 | 1.0973 |
| 1.1976 | 1.06 | 4000 | 1.0418 |
| 1.1177 | 1.19 | 4500 | 1.0301 |
| 1.0811 | 1.32 | 5000 | 1.0232 |
| 1.0506 | 1.45 | 5500 | 0.9971 |
| 1.0293 | 1.59 | 6000 | 0.9580 |
| 1.0196 | 1.72 | 6500 | 0.9551 |
| 0.9846 | 1.85 | 7000 | 0.9274 |
| 0.9702 | 1.98 | 7500 | 0.9286 |
| 0.9224 | 2.11 | 8000 | 0.8961 |
| 0.8867 | 2.25 | 8500 | 0.9193 |
| 0.8711 | 2.38 | 9000 | 0.8727 |
| 0.883 | 2.51 | 9500 | 0.8790 |
| 0.8513 | 2.64 | 10000 | 0.8830 |
| 0.8709 | 2.78 | 10500 | 0.8604 |
| 0.8766 | 2.91 | 11000 | 0.8260 |
| 0.7976 | 3.04 | 11500 | 0.8401 |
| 0.7724 | 3.17 | 12000 | 0.8617 |
| 0.78 | 3.3 | 12500 | 0.8601 |
| 0.7566 | 3.44 | 13000 | 0.8657 |
| 0.7407 | 3.57 | 13500 | 0.8347 |
### Framework versions
- Transformers 4.19.2
- Pytorch 1.11.0+cu113
- Datasets 2.2.2
- Tokenizers 0.12.1
|