|
--- |
|
license: apache-2.0 |
|
base_model: bert-base-multilingual-uncased |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- recall |
|
- accuracy |
|
model-index: |
|
- name: multibert_1210seed7 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# multibert_1210seed7 |
|
|
|
This model is a fine-tuned version of [bert-base-multilingual-uncased](https://huggingface.co/bert-base-multilingual-uncased) on an unknown dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5019 |
|
- Precisions: 0.8874 |
|
- Recall: 0.7790 |
|
- F-measure: 0.8105 |
|
- Accuracy: 0.9107 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 7.5e-05 |
|
- train_batch_size: 16 |
|
- eval_batch_size: 16 |
|
- seed: 7 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: linear |
|
- num_epochs: 14 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Precisions | Recall | F-measure | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:----------:|:------:|:---------:|:--------:| |
|
| 0.6032 | 1.0 | 236 | 0.4733 | 0.8608 | 0.6507 | 0.6853 | 0.8645 | |
|
| 0.3527 | 2.0 | 472 | 0.3790 | 0.8098 | 0.7259 | 0.7383 | 0.8826 | |
|
| 0.2198 | 3.0 | 708 | 0.4191 | 0.8209 | 0.7632 | 0.7816 | 0.8936 | |
|
| 0.1359 | 4.0 | 944 | 0.4433 | 0.8430 | 0.7344 | 0.7590 | 0.8924 | |
|
| 0.0862 | 5.0 | 1180 | 0.5207 | 0.8067 | 0.7697 | 0.7838 | 0.8947 | |
|
| 0.0637 | 6.0 | 1416 | 0.5019 | 0.8874 | 0.7790 | 0.8105 | 0.9107 | |
|
| 0.0454 | 7.0 | 1652 | 0.5048 | 0.8049 | 0.8135 | 0.8070 | 0.9058 | |
|
| 0.0318 | 8.0 | 1888 | 0.5969 | 0.8135 | 0.7710 | 0.7845 | 0.9003 | |
|
| 0.024 | 9.0 | 2124 | 0.6388 | 0.8295 | 0.7999 | 0.8057 | 0.9048 | |
|
| 0.0138 | 10.0 | 2360 | 0.6448 | 0.8304 | 0.7727 | 0.7949 | 0.9033 | |
|
| 0.0084 | 11.0 | 2596 | 0.6589 | 0.8216 | 0.7756 | 0.7936 | 0.9017 | |
|
| 0.0091 | 12.0 | 2832 | 0.6471 | 0.8340 | 0.7683 | 0.7952 | 0.9045 | |
|
| 0.005 | 13.0 | 3068 | 0.6817 | 0.8600 | 0.7662 | 0.8034 | 0.9073 | |
|
| 0.0045 | 14.0 | 3304 | 0.6774 | 0.8397 | 0.7680 | 0.7976 | 0.9077 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.34.0 |
|
- Pytorch 2.0.1+cu118 |
|
- Datasets 2.14.5 |
|
- Tokenizers 0.14.1 |
|
|