Tommert25's picture
End of training
cb908de
metadata
license: apache-2.0
base_model: bert-base-multilingual-uncased
tags:
  - generated_from_trainer
metrics:
  - recall
  - accuracy
model-index:
  - name: multibert_1210seed85
    results: []

multibert_1210seed85

This model is a fine-tuned version of bert-base-multilingual-uncased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4043
  • Precisions: 0.8689
  • Recall: 0.8339
  • F-measure: 0.8498
  • Accuracy: 0.9067

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 7.5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 85
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 14

Training results

Training Loss Epoch Step Validation Loss Precisions Recall F-measure Accuracy
0.5968 1.0 236 0.4307 0.8843 0.6749 0.7165 0.8690
0.3238 2.0 472 0.3849 0.8827 0.7215 0.7489 0.8916
0.2021 3.0 708 0.4067 0.8540 0.7640 0.7969 0.8983
0.1335 4.0 944 0.3857 0.8227 0.8002 0.8071 0.8983
0.0886 5.0 1180 0.4043 0.8689 0.8339 0.8498 0.9067
0.0654 6.0 1416 0.4734 0.8847 0.8016 0.8359 0.9089
0.0451 7.0 1652 0.5312 0.8215 0.7826 0.7996 0.8980
0.031 8.0 1888 0.5520 0.8730 0.7873 0.8222 0.9074
0.0248 9.0 2124 0.4954 0.8896 0.8145 0.8454 0.9149
0.0149 10.0 2360 0.5595 0.8717 0.8101 0.8354 0.9104
0.0086 11.0 2596 0.5703 0.8814 0.8051 0.8348 0.9112
0.0061 12.0 2832 0.5855 0.8655 0.8138 0.8356 0.9103
0.006 13.0 3068 0.6068 0.8578 0.8137 0.8329 0.9105
0.0039 14.0 3304 0.6147 0.8656 0.8129 0.8356 0.9112

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1