SentenceTransformer

This is a sentence-transformers model trained. It maps sentences & paragraphs to a None-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Maximum Sequence Length: None tokens
  • Output Dimensionality: None tokens
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): ConcatCustomPooling(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(30522, 1024, padding_idx=0)
        (position_embeddings): Embedding(512, 1024)
        (token_type_embeddings): Embedding(2, 1024)
        (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (1): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (2): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (3): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (4): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (5): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (6): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (7): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (8): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (9): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (10): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (11): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (12): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (13): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (14): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (15): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (16): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (17): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (18): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (19): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (20): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (21): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (22): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
          (23): BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=1024, out_features=1024, bias=True)
                (key): Linear(in_features=1024, out_features=1024, bias=True)
                (value): Linear(in_features=1024, out_features=1024, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=1024, out_features=1024, bias=True)
                (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=1024, out_features=4096, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=4096, out_features=1024, bias=True)
              (LayerNorm): LayerNorm((1024,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=1024, out_features=1024, bias=True)
        (activation): Tanh()
      )
    )
  )
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("Tomor0720/bge_large_en_v1.5_custom_pooling")
# Run inference
sentences = [
    'The weather is lovely today.',
    "It's so sunny outside!",
    'He drove to the stadium.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Framework Versions

  • Python: 3.9.18
  • Sentence Transformers: 3.1.1
  • Transformers: 4.45.1
  • PyTorch: 1.13.0+cu117
  • Accelerate: 0.20.3
  • Datasets: 2.13.0
  • Tokenizers: 0.20.0

Citation

BibTeX

Downloads last month
13
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.