bert4torch配套config

  • bert4torch加载模型时候可以在线加载,无需下载文件
  • Github主页
  • 预训练模型支持多种代码加载方式
from bert4torch.models import build_transformer_model

# 1. 仅指定config_path: 从头初始化模型结构, 不加载预训练模型
model = build_transformer_model('./model/bert4torch_config.json')

# 2. 仅指定checkpoint_path: 
## 2.1 文件夹路径: 自动寻找路径下的*.bin/*.safetensors权重文件 + bert4torch_config.json/config.json文件
model = build_transformer_model(checkpoint_path='./model')

## 2.2 文件路径/列表: 文件路径即权重路径/列表, config会从同级目录下寻找
model = build_transformer_model(checkpoint_path='./pytorch_model.bin')

## 2.3 model_name: hf上预训练权重名称, 会自动下载hf权重以及bert4torch_config.json文件
model = build_transformer_model(checkpoint_path='bert-base-chinese')

# 3. 同时指定config_path和checkpoint_path(本地路径名或model_name排列组合): 
config_path = './model/bert4torch_config.json'  # 或'bert-base-chinese'
checkpoint_path = './model/pytorch_model.bin'  # 或'bert-base-chinese'
model = build_transformer_model(config_path, checkpoint_path)
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.