metadata
library_name: peft
tags:
- parquet
- text-classification
datasets:
- tweet_eval
metrics:
- accuracy
base_model: classla/bcms-bertic-parlasent-bcs-ter
model-index:
- name: classla_bcms-bertic-parlasent-bcs-ter-finetuned-lora-tweet_eval_emotion
results:
- task:
type: text-classification
name: Text Classification
dataset:
name: tweet_eval
type: tweet_eval
config: emotion
split: validation
args: emotion
metrics:
- type: accuracy
value: 0.4946524064171123
name: accuracy
classla_bcms-bertic-parlasent-bcs-ter-finetuned-lora-tweet_eval_emotion
This model is a fine-tuned version of classla/bcms-bertic-parlasent-bcs-ter on the tweet_eval dataset. It achieves the following results on the evaluation set:
- accuracy: 0.4947
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0004
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 4
Training results
accuracy | train_loss | epoch |
---|---|---|
0.1818 | None | 0 |
0.4679 | 1.2475 | 0 |
0.4786 | 1.1874 | 1 |
0.4920 | 1.1567 | 2 |
0.4947 | 1.1286 | 3 |
Framework versions
- PEFT 0.8.2
- Transformers 4.37.2
- Pytorch 2.2.0
- Datasets 2.16.1
- Tokenizers 0.15.2