SentenceTransformer based on sentence-transformers/multi-qa-MiniLM-L6-dot-v1
This is a sentence-transformers model finetuned from sentence-transformers/multi-qa-MiniLM-L6-dot-v1. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/multi-qa-MiniLM-L6-dot-v1
- Maximum Sequence Length: 512 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Dot Product
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("Trelis/multi-qa-MiniLM-L6-dot-v1-2-constant-ep-MNRLtriplets-2e-5-batch32-cuda-overlap")
# Run inference
sentences = [
'What is the minimum number of males and females required on the field of play in mixed gender competitions?',
'5. 3. 1 this does not apply for players sent to the sin bin area. 5. 4 in mixed gender competitions, the maximum number of males allowed on the field of play is three ( 3 ), the minimum male requirement is one ( 1 ) and the minimum female requirement is one ( 1 ). 6 team coach and team officials 6. 1 the team coach ( s ) and team officials may be permitted inside the perimeter but shall be required to be positioned either in the interchange area or at the end of the field of play for the duration of the match. 6. 2 the team coach ( s ) and team officials may move from one position to the other but shall do so without delay. while in a position at the end of the field of play, the team coach ( s ) or team official must remain no closer than five ( 5 ) metres from the dead ball line and must not coach or communicate ( verbal or non - verbal ) with either team or the referees.',
'tap and tap penalty the method of commencing the match, recommencing the match after half time and after a try has been scored. the tap is also the method of recommencing play when a penalty is awarded. the tap is taken by placing the ball on the ground at or behind the mark, releasing both hands from the ball, tapping the ball gently with either foot or touching the foot on the ball. the ball must not roll or move more than one ( 1 ) metre in any direction and must be retrieved cleanly, without touching the ground again. the player may face any direction and use either foot. provided it is at the mark, the ball does not have to be lifted from the ground prior to a tap being taken. team a group of players constituting one ( 1 ) side in a competition match. tfa touch football australia limited touch any contact between the player in possession and a defending player. a touch includes contact on the ball, hair or clothing and may be made by a defending player or by the player in possession. touch count the progressive number of touches that each team has before a change of possession, from zero ( 0 ) to six ( 6 ).',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy
: stepsper_device_train_batch_size
: 32per_device_eval_batch_size
: 32learning_rate
: 2e-05num_train_epochs
: 2lr_scheduler_type
: constantwarmup_ratio
: 0.3bf16
: True
All Hyperparameters
Click to expand
overwrite_output_dir
: Falsedo_predict
: Falseeval_strategy
: stepsprediction_loss_only
: Trueper_device_train_batch_size
: 32per_device_eval_batch_size
: 32per_gpu_train_batch_size
: Noneper_gpu_eval_batch_size
: Nonegradient_accumulation_steps
: 1eval_accumulation_steps
: Nonelearning_rate
: 2e-05weight_decay
: 0.0adam_beta1
: 0.9adam_beta2
: 0.999adam_epsilon
: 1e-08max_grad_norm
: 1.0num_train_epochs
: 2max_steps
: -1lr_scheduler_type
: constantlr_scheduler_kwargs
: {}warmup_ratio
: 0.3warmup_steps
: 0log_level
: passivelog_level_replica
: warninglog_on_each_node
: Truelogging_nan_inf_filter
: Truesave_safetensors
: Truesave_on_each_node
: Falsesave_only_model
: Falserestore_callback_states_from_checkpoint
: Falseno_cuda
: Falseuse_cpu
: Falseuse_mps_device
: Falseseed
: 42data_seed
: Nonejit_mode_eval
: Falseuse_ipex
: Falsebf16
: Truefp16
: Falsefp16_opt_level
: O1half_precision_backend
: autobf16_full_eval
: Falsefp16_full_eval
: Falsetf32
: Nonelocal_rank
: 0ddp_backend
: Nonetpu_num_cores
: Nonetpu_metrics_debug
: Falsedebug
: []dataloader_drop_last
: Falsedataloader_num_workers
: 0dataloader_prefetch_factor
: Nonepast_index
: -1disable_tqdm
: Falseremove_unused_columns
: Truelabel_names
: Noneload_best_model_at_end
: Falseignore_data_skip
: Falsefsdp
: []fsdp_min_num_params
: 0fsdp_config
: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap
: Noneaccelerator_config
: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed
: Nonelabel_smoothing_factor
: 0.0optim
: adamw_torchoptim_args
: Noneadafactor
: Falsegroup_by_length
: Falselength_column_name
: lengthddp_find_unused_parameters
: Noneddp_bucket_cap_mb
: Noneddp_broadcast_buffers
: Falsedataloader_pin_memory
: Truedataloader_persistent_workers
: Falseskip_memory_metrics
: Trueuse_legacy_prediction_loop
: Falsepush_to_hub
: Falseresume_from_checkpoint
: Nonehub_model_id
: Nonehub_strategy
: every_savehub_private_repo
: Falsehub_always_push
: Falsegradient_checkpointing
: Falsegradient_checkpointing_kwargs
: Noneinclude_inputs_for_metrics
: Falseeval_do_concat_batches
: Truefp16_backend
: autopush_to_hub_model_id
: Nonepush_to_hub_organization
: Nonemp_parameters
:auto_find_batch_size
: Falsefull_determinism
: Falsetorchdynamo
: Noneray_scope
: lastddp_timeout
: 1800torch_compile
: Falsetorch_compile_backend
: Nonetorch_compile_mode
: Nonedispatch_batches
: Nonesplit_batches
: Noneinclude_tokens_per_second
: Falseinclude_num_input_tokens_seen
: Falseneftune_noise_alpha
: Noneoptim_target_modules
: Nonebatch_eval_metrics
: Falseeval_on_start
: Falsebatch_sampler
: batch_samplermulti_dataset_batch_sampler
: proportional
Training Logs
Click to expand
Epoch | Step | Training Loss | loss |
---|---|---|---|
0.0066 | 2 | 2.4302 | - |
0.0131 | 4 | 2.4247 | - |
0.0197 | 6 | 2.0174 | - |
0.0262 | 8 | 2.2159 | - |
0.0328 | 10 | 2.0163 | - |
0.0393 | 12 | 1.7183 | - |
0.0459 | 14 | 1.9459 | - |
0.0525 | 16 | 2.0123 | - |
0.0590 | 18 | 1.7977 | - |
0.0656 | 20 | 2.1162 | - |
0.0721 | 22 | 1.6443 | - |
0.0787 | 24 | 1.9009 | - |
0.0852 | 26 | 1.5068 | - |
0.0918 | 28 | 1.6354 | - |
0.0984 | 30 | 1.6703 | - |
0.1049 | 32 | 1.8509 | - |
0.1115 | 34 | 1.6663 | - |
0.1180 | 36 | 1.3685 | - |
0.1246 | 38 | 1.5531 | - |
0.1311 | 40 | 1.3564 | - |
0.1377 | 42 | 1.3271 | - |
0.1443 | 44 | 1.6339 | - |
0.1508 | 46 | 1.5644 | - |
0.1574 | 48 | 1.3918 | - |
0.1639 | 50 | 1.3628 | - |
0.1705 | 52 | 1.1994 | - |
0.1770 | 54 | 1.1174 | - |
0.1836 | 56 | 1.3724 | - |
0.1902 | 58 | 1.3164 | - |
0.1967 | 60 | 1.2333 | - |
0.2033 | 62 | 1.3354 | - |
0.2098 | 64 | 1.2378 | - |
0.2164 | 66 | 1.4894 | - |
0.2230 | 68 | 1.1909 | - |
0.2295 | 70 | 1.1961 | - |
0.2361 | 72 | 1.0392 | - |
0.2426 | 74 | 1.0383 | - |
0.2492 | 76 | 1.1072 | - |
0.2525 | 77 | - | 0.8909 |
0.2557 | 78 | 1.2151 | - |
0.2623 | 80 | 1.1497 | - |
0.2689 | 82 | 0.9377 | - |
0.2754 | 84 | 1.2349 | - |
0.2820 | 86 | 1.1121 | - |
0.2885 | 88 | 1.0621 | - |
0.2951 | 90 | 1.2678 | - |
0.3016 | 92 | 1.0484 | - |
0.3082 | 94 | 0.9637 | - |
0.3148 | 96 | 0.9904 | - |
0.3213 | 98 | 0.9988 | - |
0.3279 | 100 | 0.8051 | - |
0.3344 | 102 | 1.0701 | - |
0.3410 | 104 | 1.1697 | - |
0.3475 | 106 | 1.1753 | - |
0.3541 | 108 | 1.1611 | - |
0.3607 | 110 | 0.9969 | - |
0.3672 | 112 | 0.9606 | - |
0.3738 | 114 | 0.9209 | - |
0.3803 | 116 | 1.0459 | - |
0.3869 | 118 | 0.8615 | - |
0.3934 | 120 | 0.7766 | - |
0.4 | 122 | 1.0155 | - |
0.4066 | 124 | 0.9394 | - |
0.4131 | 126 | 0.8924 | - |
0.4197 | 128 | 0.8024 | - |
0.4262 | 130 | 1.0985 | - |
0.4328 | 132 | 1.0747 | - |
0.4393 | 134 | 1.0246 | - |
0.4459 | 136 | 0.9245 | - |
0.4525 | 138 | 0.909 | - |
0.4590 | 140 | 1.0893 | - |
0.4656 | 142 | 1.0213 | - |
0.4721 | 144 | 0.8544 | - |
0.4787 | 146 | 0.9737 | - |
0.4852 | 148 | 0.8735 | - |
0.4918 | 150 | 0.928 | - |
0.4984 | 152 | 0.8356 | - |
0.5049 | 154 | 1.0019 | 0.7711 |
0.5115 | 156 | 1.0054 | - |
0.5180 | 158 | 0.8963 | - |
0.5246 | 160 | 0.9006 | - |
0.5311 | 162 | 0.9877 | - |
0.5377 | 164 | 1.0281 | - |
0.5443 | 166 | 0.8472 | - |
0.5508 | 168 | 0.9504 | - |
0.5574 | 170 | 1.0462 | - |
0.5639 | 172 | 0.9501 | - |
0.5705 | 174 | 0.8996 | - |
0.5770 | 176 | 1.0198 | - |
0.5836 | 178 | 0.9341 | - |
0.5902 | 180 | 0.8529 | - |
0.5967 | 182 | 0.939 | - |
0.6033 | 184 | 1.0716 | - |
0.6098 | 186 | 0.9437 | - |
0.6164 | 188 | 0.7956 | - |
0.6230 | 190 | 0.8259 | - |
0.6295 | 192 | 0.941 | - |
0.6361 | 194 | 0.8254 | - |
0.6426 | 196 | 0.8056 | - |
0.6492 | 198 | 0.9525 | - |
0.6557 | 200 | 0.7497 | - |
0.6623 | 202 | 0.9103 | - |
0.6689 | 204 | 1.0092 | - |
0.6754 | 206 | 0.8893 | - |
0.6820 | 208 | 0.924 | - |
0.6885 | 210 | 0.8118 | - |
0.6951 | 212 | 0.7734 | - |
0.7016 | 214 | 0.8612 | - |
0.7082 | 216 | 0.6743 | - |
0.7148 | 218 | 0.9175 | - |
0.7213 | 220 | 0.9795 | - |
0.7279 | 222 | 0.9852 | - |
0.7344 | 224 | 0.7345 | - |
0.7410 | 226 | 0.9914 | - |
0.7475 | 228 | 0.9152 | - |
0.7541 | 230 | 1.0494 | - |
0.7574 | 231 | - | 0.7461 |
0.7607 | 232 | 0.8496 | - |
0.7672 | 234 | 0.8374 | - |
0.7738 | 236 | 0.796 | - |
0.7803 | 238 | 0.8899 | - |
0.7869 | 240 | 1.055 | - |
0.7934 | 242 | 0.9787 | - |
0.8 | 244 | 0.8813 | - |
0.8066 | 246 | 1.0675 | - |
0.8131 | 248 | 1.0196 | - |
0.8197 | 250 | 0.7574 | - |
0.8262 | 252 | 0.9044 | - |
0.8328 | 254 | 0.8997 | - |
0.8393 | 256 | 0.9668 | - |
0.8459 | 258 | 0.8887 | - |
0.8525 | 260 | 1.0042 | - |
0.8590 | 262 | 1.0572 | - |
0.8656 | 264 | 0.8395 | - |
0.8721 | 266 | 0.7637 | - |
0.8787 | 268 | 0.952 | - |
0.8852 | 270 | 0.9178 | - |
0.8918 | 272 | 0.7949 | - |
0.8984 | 274 | 0.8409 | - |
0.9049 | 276 | 0.8708 | - |
0.9115 | 278 | 0.8427 | - |
0.9180 | 280 | 0.9451 | - |
0.9246 | 282 | 0.8579 | - |
0.9311 | 284 | 0.7472 | - |
0.9377 | 286 | 0.8878 | - |
0.9443 | 288 | 0.8266 | - |
0.9508 | 290 | 0.7753 | - |
0.9574 | 292 | 0.7455 | - |
0.9639 | 294 | 0.9418 | - |
0.9705 | 296 | 0.8795 | - |
0.9770 | 298 | 0.8713 | - |
0.9836 | 300 | 0.896 | - |
0.9902 | 302 | 0.7666 | - |
0.9967 | 304 | 0.8474 | - |
1.0033 | 306 | 0.5415 | - |
1.0098 | 308 | 0.9159 | 0.7310 |
1.0164 | 310 | 1.049 | - |
1.0230 | 312 | 0.9572 | - |
1.0295 | 314 | 0.9994 | - |
1.0361 | 316 | 0.8166 | - |
1.0426 | 318 | 0.8915 | - |
1.0492 | 320 | 0.8417 | - |
1.0557 | 322 | 0.6382 | - |
1.0623 | 324 | 1.1689 | - |
1.0689 | 326 | 0.7979 | - |
1.0754 | 328 | 0.9044 | - |
1.0820 | 330 | 1.0126 | - |
1.0885 | 332 | 0.9459 | - |
1.0951 | 334 | 0.7851 | - |
1.1016 | 336 | 0.8744 | - |
1.1082 | 338 | 0.8425 | - |
1.1148 | 340 | 0.8789 | - |
1.1213 | 342 | 0.8451 | - |
1.1279 | 344 | 0.8488 | - |
1.1344 | 346 | 0.8097 | - |
1.1410 | 348 | 0.7656 | - |
1.1475 | 350 | 0.8751 | - |
1.1541 | 352 | 0.7859 | - |
1.1607 | 354 | 0.7413 | - |
1.1672 | 356 | 1.0012 | - |
1.1738 | 358 | 0.7506 | - |
1.1803 | 360 | 0.8725 | - |
1.1869 | 362 | 0.9096 | - |
1.1934 | 364 | 0.9487 | - |
1.2 | 366 | 0.7911 | - |
1.2066 | 368 | 0.9752 | - |
1.2131 | 370 | 0.9904 | - |
1.2197 | 372 | 0.7559 | - |
1.2262 | 374 | 0.7669 | - |
1.2328 | 376 | 0.8321 | - |
1.2393 | 378 | 0.9426 | - |
1.2459 | 380 | 0.928 | - |
1.2525 | 382 | 0.8514 | - |
1.2590 | 384 | 0.8755 | - |
1.2623 | 385 | - | 0.7263 |
1.2656 | 386 | 0.9364 | - |
1.2721 | 388 | 0.9249 | - |
1.2787 | 390 | 0.8506 | - |
1.2852 | 392 | 0.9558 | - |
1.2918 | 394 | 0.9067 | - |
1.2984 | 396 | 0.8908 | - |
1.3049 | 398 | 0.6504 | - |
1.3115 | 400 | 0.7768 | - |
1.3180 | 402 | 0.6553 | - |
1.3246 | 404 | 0.6869 | - |
1.3311 | 406 | 0.9872 | - |
1.3377 | 408 | 0.828 | - |
1.3443 | 410 | 0.896 | - |
1.3508 | 412 | 0.8047 | - |
1.3574 | 414 | 0.8023 | - |
1.3639 | 416 | 1.0378 | - |
1.3705 | 418 | 0.8644 | - |
1.3770 | 420 | 0.9643 | - |
1.3836 | 422 | 0.7227 | - |
1.3902 | 424 | 0.7723 | - |
1.3967 | 426 | 0.9843 | - |
1.4033 | 428 | 0.7796 | - |
1.4098 | 430 | 0.8349 | - |
1.4164 | 432 | 0.8458 | - |
1.4230 | 434 | 0.6638 | - |
1.4295 | 436 | 0.85 | - |
1.4361 | 438 | 0.8938 | - |
1.4426 | 440 | 0.9992 | - |
1.4492 | 442 | 0.8008 | - |
1.4557 | 444 | 0.8251 | - |
1.4623 | 446 | 0.94 | - |
1.4689 | 448 | 0.911 | - |
1.4754 | 450 | 0.8789 | - |
1.4820 | 452 | 0.7201 | - |
1.4885 | 454 | 0.9465 | - |
1.4951 | 456 | 0.7776 | - |
1.5016 | 458 | 0.9056 | - |
1.5082 | 460 | 0.9087 | - |
1.5148 | 462 | 0.9425 | 0.7224 |
1.5213 | 464 | 0.8603 | - |
1.5279 | 466 | 0.8143 | - |
1.5344 | 468 | 1.0147 | - |
1.5410 | 470 | 0.7188 | - |
1.5475 | 472 | 0.8249 | - |
1.5541 | 474 | 0.7593 | - |
1.5607 | 476 | 0.9883 | - |
1.5672 | 478 | 0.7453 | - |
1.5738 | 480 | 0.7667 | - |
1.5803 | 482 | 0.7323 | - |
1.5869 | 484 | 0.8276 | - |
1.5934 | 486 | 0.7984 | - |
1.6 | 488 | 0.8216 | - |
1.6066 | 490 | 0.6734 | - |
1.6131 | 492 | 0.6356 | - |
1.6197 | 494 | 0.8072 | - |
1.6262 | 496 | 0.7929 | - |
1.6328 | 498 | 0.8359 | - |
1.6393 | 500 | 0.8005 | - |
1.6459 | 502 | 0.8072 | - |
1.6525 | 504 | 0.7875 | - |
1.6590 | 506 | 0.7381 | - |
1.6656 | 508 | 0.8326 | - |
1.6721 | 510 | 0.8628 | - |
1.6787 | 512 | 0.9308 | - |
1.6852 | 514 | 0.7246 | - |
1.6918 | 516 | 0.8821 | - |
1.6984 | 518 | 0.7214 | - |
1.7049 | 520 | 0.7731 | - |
1.7115 | 522 | 0.7165 | - |
1.7180 | 524 | 0.8376 | - |
1.7246 | 526 | 0.8067 | - |
1.7311 | 528 | 0.8293 | - |
1.7377 | 530 | 0.9654 | - |
1.7443 | 532 | 0.6332 | - |
1.7508 | 534 | 0.8155 | - |
1.7574 | 536 | 0.7569 | - |
1.7639 | 538 | 0.7649 | - |
1.7672 | 539 | - | 0.7193 |
1.7705 | 540 | 0.7826 | - |
1.7770 | 542 | 0.7806 | - |
1.7836 | 544 | 0.701 | - |
1.7902 | 546 | 0.8998 | - |
1.7967 | 548 | 0.7879 | - |
1.8033 | 550 | 0.9837 | - |
1.8098 | 552 | 0.8297 | - |
1.8164 | 554 | 0.8317 | - |
1.8230 | 556 | 0.8819 | - |
1.8295 | 558 | 0.6683 | - |
1.8361 | 560 | 0.8085 | - |
1.8426 | 562 | 0.7737 | - |
1.8492 | 564 | 0.7873 | - |
1.8557 | 566 | 0.7587 | - |
1.8623 | 568 | 0.7513 | - |
1.8689 | 570 | 0.9404 | - |
1.8754 | 572 | 0.7818 | - |
1.8820 | 574 | 0.761 | - |
1.8885 | 576 | 0.7163 | - |
1.8951 | 578 | 0.7994 | - |
1.9016 | 580 | 0.8483 | - |
1.9082 | 582 | 0.7287 | - |
1.9148 | 584 | 0.8435 | - |
1.9213 | 586 | 0.8493 | - |
1.9279 | 588 | 0.8544 | - |
1.9344 | 590 | 0.7437 | - |
1.9410 | 592 | 0.7449 | - |
1.9475 | 594 | 0.7808 | - |
1.9541 | 596 | 0.8658 | - |
1.9607 | 598 | 0.6678 | - |
1.9672 | 600 | 0.7104 | - |
1.9738 | 602 | 0.8293 | - |
1.9803 | 604 | 0.8346 | - |
1.9869 | 606 | 0.885 | - |
1.9934 | 608 | 0.6521 | - |
2.0 | 610 | 0.3965 | - |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.0.1
- Transformers: 4.42.3
- PyTorch: 2.1.1+cu121
- Accelerate: 0.31.0
- Datasets: 2.17.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 10
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.