Triangle104/Dumpling-Qwen2.5-1.5B-Q4_K_S-GGUF
This model was converted to GGUF format from nbeerbower/Dumpling-Qwen2.5-1.5B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Dumpling-Qwen2.5-32B
nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B finetuned on:
nbeerbower/GreatFirewall-DPO
nbeerbower/Schule-DPO
nbeerbower/Purpura-DPO
nbeerbower/Arkhaios-DPO
jondurbin/truthy-dpo-v0.1
antiven0m/physical-reasoning-dpo
flammenai/Date-DPO-NoAsterisks
flammenai/Prude-Phi3-DPO
Atsunori/HelpSteer2-DPO (1,000 samples)
jondurbin/gutenberg-dpo-v0.1
nbeerbower/gutenberg2-dpo
nbeerbower/gutenberg-moderne-dpo.
Method
QLoRA ORPO tune with 2x RTX 3090 for 2 epochs.
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-Q4_K_S-GGUF --hf-file dumpling-qwen2.5-1.5b-q4_k_s.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-Q4_K_S-GGUF --hf-file dumpling-qwen2.5-1.5b-q4_k_s.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-Q4_K_S-GGUF --hf-file dumpling-qwen2.5-1.5b-q4_k_s.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Dumpling-Qwen2.5-1.5B-Q4_K_S-GGUF --hf-file dumpling-qwen2.5-1.5b-q4_k_s.gguf -c 2048
- Downloads last month
- 0
Model tree for Triangle104/Dumpling-Qwen2.5-1.5B-Q4_K_S-GGUF
Base model
nbeerbower/EVA-abliterated-TIES-Qwen2.5-1.5B