Minerva-10b / README.md
Triangle104's picture
Adding Evaluation Results (#1)
e48a319 verified
metadata
license: apache-2.0
library_name: transformers
tags:
  - mergekit
  - merge
base_model:
  - nbeerbower/mistral-nemo-gutenberg3-12B
  - Spestly/Ava-1.5-12B
model-index:
  - name: Minerva-10b
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: IFEval (0-Shot)
          type: HuggingFaceH4/ifeval
          args:
            num_few_shot: 0
        metrics:
          - type: inst_level_strict_acc and prompt_level_strict_acc
            value: 18.79
            name: strict accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Minerva-10b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: BBH (3-Shot)
          type: BBH
          args:
            num_few_shot: 3
        metrics:
          - type: acc_norm
            value: 22.69
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Minerva-10b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MATH Lvl 5 (4-Shot)
          type: hendrycks/competition_math
          args:
            num_few_shot: 4
        metrics:
          - type: exact_match
            value: 0
            name: exact match
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Minerva-10b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GPQA (0-shot)
          type: Idavidrein/gpqa
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 4.14
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Minerva-10b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MuSR (0-shot)
          type: TAUR-Lab/MuSR
          args:
            num_few_shot: 0
        metrics:
          - type: acc_norm
            value: 5.61
            name: acc_norm
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Minerva-10b
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU-PRO (5-shot)
          type: TIGER-Lab/MMLU-Pro
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 14.64
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=Triangle104/Minerva-10b
          name: Open LLM Leaderboard

merge

This is a merge of pre-trained language models created using mergekit.

Merge Details

Quant: https://huggingface.co/Triangle104/Minerva-10b-Q4_K_M-GGUF

Feedback is welcome. Give a like if useful.

Credit to nbeerbower and Specstly for original models.

Merge Method

This model was merged using the SLERP merge method.

Models Merged

The following models were included in the merge:

Configuration

The following YAML configuration was used to produce this model:

slices:
  - sources:
      - model: Spestly/Ava-1.5-12B
        layer_range: [0, 32]
      - model: nbeerbower/mistral-nemo-gutenberg3-12B
        layer_range: [0, 32]
merge_method: slerp
base_model: Spestly/Ava-1.5-12B
parameters:
  t:
    - filter: self_attn
      value: [0, 0.5, 0.3, 0.7, 1]
    - filter: mlp
      value: [1, 0.5, 0.7, 0.3, 0]
    - value: 0.5
dtype: bfloat16

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 10.98
IFEval (0-Shot) 18.79
BBH (3-Shot) 22.69
MATH Lvl 5 (4-Shot) 0.00
GPQA (0-shot) 4.14
MuSR (0-shot) 5.61
MMLU-PRO (5-shot) 14.64