license: apache-2.0
language:
- en
- fr
- de
- es
- it
- pt
- ru
- zh
- ja
extra_gated_description: >-
If you want to learn more about how we process your personal data, please read
our <a href="https://mistral.ai/terms/">Privacy Policy</a>.
base_model: mistralai/Mistral-Nemo-Base-2407
tags:
- llama-cpp
- gguf-my-repo
Triangle104/Mistral-Nemo-Base-2407-Q4_K_M-GGUF
This model was converted to GGUF format from mistralai/Mistral-Nemo-Base-2407
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
The Mistral-Nemo-Base-2407 Large Language Model (LLM) is a pretrained generative text model of 12B parameters trained jointly by Mistral AI and NVIDIA, it significantly outperforms existing models smaller or similar in size.
For more details about this model please refer to our release blog post.
Key features
Released under the Apache 2 License
Pre-trained and instructed versions
Trained with a 128k context window
Trained on a large proportion of multilingual and code data
Drop-in replacement of Mistral 7B
Model Architecture
Mistral Nemo is a transformer model, with the following architecture choices:
Layers: 40
Dim: 5,120
Head dim: 128
Hidden dim: 14,436
Activation Function: SwiGLU
Number of heads: 32
Number of kv-heads: 8 (GQA)
Vocabulary size: 2**17 ~= 128k
Rotary embeddings (theta = 1M)
Metrics Main Benchmarks Benchmark Score HellaSwag (0-shot) 83.5% Winogrande (0-shot) 76.8% OpenBookQA (0-shot) 60.6% CommonSenseQA (0-shot) 70.4% TruthfulQA (0-shot) 50.3% MMLU (5-shot) 68.0% TriviaQA (5-shot) 73.8% NaturalQuestions (5-shot) 31.2% Multilingual Benchmarks (MMLU) Language Score French 62.3% German 62.7% Spanish 64.6% Italian 61.3% Portuguese 63.3% Russian 59.2% Chinese 59.0% Japanese 59.0% Usage
The model can be used with three different frameworks
mistral_inference: See here
transformers: See here
NeMo: See nvidia/Mistral-NeMo-12B-Base
Mistral Inference
Install
It is recommended to use mistralai/Mistral-Nemo-Base-2407 with mistral-inference. For HF transformers code snippets, please keep scrolling.
pip install mistral_inference
Download
from huggingface_hub import snapshot_download from pathlib import Path
mistral_models_path = Path.home().joinpath('mistral_models', 'Nemo-v0.1') mistral_models_path.mkdir(parents=True, exist_ok=True)
snapshot_download(repo_id="mistralai/Mistral-Nemo-Base-2407", allow_patterns=["params.json", "consolidated.safetensors", "tekken.json"], local_dir=mistral_models_path)
Demo
After installing mistral_inference, a mistral-demo CLI command should be available in your environment.
mistral-demo $HOME/mistral_models/Nemo-v0.1
Transformers
NOTE: Until a new release has been made, you need to install transformers from source:
pip install git+https://github.com/huggingface/transformers.git
If you want to use Hugging Face transformers to generate text, you can do something like this.
from transformers import AutoModelForCausalLM, AutoTokenizer
model_id = "mistralai/Mistral-Nemo-Base-2407" tokenizer = AutoTokenizer.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(model_id) inputs = tokenizer("Hello my name is", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=20) print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Unlike previous Mistral models, Mistral Nemo requires smaller temperatures. We recommend to use a temperature of 0.3.
Note
Mistral-Nemo-Base-2407 is a pretrained base model and therefore does not have any moderation mechanisms. The Mistral AI Team
Albert Jiang, Alexandre Sablayrolles, Alexis Tacnet, Alok Kothari, Antoine Roux, Arthur Mensch, Audrey Herblin-Stoop, Augustin Garreau, Austin Birky, Bam4d, Baptiste Bout, Baudouin de Monicault, Blanche Savary, Carole Rambaud, Caroline Feldman, Devendra Singh Chaplot, Diego de las Casas, Eleonore Arcelin, Emma Bou Hanna, Etienne Metzger, Gaspard Blanchet, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Harizo Rajaona, Henri Roussez, Hichem Sattouf, Ian Mack, Jean-Malo Delignon, Jessica Chudnovsky, Justus Murke, Kartik Khandelwal, Lawrence Stewart, Louis Martin, Louis Ternon, Lucile Saulnier, Lélio Renard Lavaud, Margaret Jennings, Marie Pellat, Marie Torelli, Marie-Anne Lachaux, Marjorie Janiewicz, Mickaël Seznec, Nicolas Schuhl, Niklas Muhs, Olivier de Garrigues, Patrick von Platen, Paul Jacob, Pauline Buche, Pavan Kumar Reddy, Perry Savas, Pierre Stock, Romain Sauvestre, Sagar Vaze, Sandeep Subramanian, Saurabh Garg, Sophia Yang, Szymon Antoniak, Teven Le Scao, Thibault Schueller, Thibaut Lavril, Thomas Wang, Théophile Gervet, Timothée Lacroix, Valera Nemychnikova, Wendy Shang, William El Sayed, William Marshall
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Mistral-Nemo-Base-2407-Q4_K_M-GGUF --hf-file mistral-nemo-base-2407-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Mistral-Nemo-Base-2407-Q4_K_M-GGUF --hf-file mistral-nemo-base-2407-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Mistral-Nemo-Base-2407-Q4_K_M-GGUF --hf-file mistral-nemo-base-2407-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Mistral-Nemo-Base-2407-Q4_K_M-GGUF --hf-file mistral-nemo-base-2407-q4_k_m.gguf -c 2048