base_model: Silvelter/Yomiel-22B
library_name: transformers
tags:
- mergekit
- merge
- llama-cpp
- gguf-my-repo
license: apache-2.0
Triangle104/Yomiel-22B-Q4_K_M-GGUF
This model was converted to GGUF format from Silvelter/Yomiel-22B
using llama.cpp via the ggml.ai's GGUF-my-repo space.
Refer to the original model card for more details on the model.
Model details:
This is a merge of pre-trained language models created using mergekit.
Merge Method
This model was merged using the della_linear merge method using ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1 as a base.
Models Merged
The following models were included in the merge:
nbeerbower/Mistral-Small-Drummer-22B
gghfez/SeminalRP-22b
TheDrummer/Cydonia-22B-v1.1
anthracite-org/magnum-v4-22b
Configuration
The following YAML configuration was used to produce this model:
base_model: ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1 parameters: epsilon: 0.04 lambda: 1.05 int8_mask: true rescale: true normalize: false dtype: bfloat16 tokenizer_source: base merge_method: della_linear models:
- model: ArliAI/Mistral-Small-22B-ArliAI-RPMax-v1.1 parameters: weight: [0.2, 0.3, 0.2, 0.3, 0.2] density: [0.45, 0.55, 0.45, 0.55, 0.45]
- model: gghfez/SeminalRP-22b parameters: weight: [0.01768, -0.01675, 0.01285, -0.01696, 0.01421] density: [0.6, 0.4, 0.5, 0.4, 0.6]
- model: anthracite-org/magnum-v4-22b parameters: weight: [0.208, 0.139, 0.139, 0.139, 0.208] density: [0.7]
- model: TheDrummer/Cydonia-22B-v1.1 parameters: weight: [0.208, 0.139, 0.139, 0.139, 0.208] density: [0.7]
- model: nbeerbower/Mistral-Small-Drummer-22B parameters: weight: [0.33] density: [0.45, 0.55, 0.45, 0.55, 0.45]
Use with llama.cpp
Install llama.cpp through brew (works on Mac and Linux)
brew install llama.cpp
Invoke the llama.cpp server or the CLI.
CLI:
llama-cli --hf-repo Triangle104/Yomiel-22B-Q4_K_M-GGUF --hf-file yomiel-22b-q4_k_m.gguf -p "The meaning to life and the universe is"
Server:
llama-server --hf-repo Triangle104/Yomiel-22B-Q4_K_M-GGUF --hf-file yomiel-22b-q4_k_m.gguf -c 2048
Note: You can also use this checkpoint directly through the usage steps listed in the Llama.cpp repo as well.
Step 1: Clone llama.cpp from GitHub.
git clone https://github.com/ggerganov/llama.cpp
Step 2: Move into the llama.cpp folder and build it with LLAMA_CURL=1
flag along with other hardware-specific flags (for ex: LLAMA_CUDA=1 for Nvidia GPUs on Linux).
cd llama.cpp && LLAMA_CURL=1 make
Step 3: Run inference through the main binary.
./llama-cli --hf-repo Triangle104/Yomiel-22B-Q4_K_M-GGUF --hf-file yomiel-22b-q4_k_m.gguf -p "The meaning to life and the universe is"
or
./llama-server --hf-repo Triangle104/Yomiel-22B-Q4_K_M-GGUF --hf-file yomiel-22b-q4_k_m.gguf -c 2048