TristanBehrens's picture
Update README.md
9fb5edb verified
|
raw
history blame
2.11 kB
---
language:
- en
tags:
- NLP
license: mit
datasets:
- TristanBehrens/bach_garland_2024-100K
base_model: None
---
# Bach Garland Pharia - A Pharia model trained on Johann Sebastian Bach Style music
Say Hello on [LinkedIn](https://www.linkedin.com/dr-tristan-behrens-734967a2/) and [X](https://x.com/DrTBehrens).
![Cover](bachgarlandphariaplusplus.jpg)
This is a Pharia model trained on music by Johann Sebastian Bach. It includes all pieces of Bach's music that can be played on church organ. The samples come in the prototypical Garland notation.
The dataset contains 100K samples and comes with a total token count of 144M.
## How to use
1. Clone this repository and follow the installation instructions: https://github.com/AI-Guru/helibrunna/
2. Open and run the notebook `examples/music.ipynb`. Do not forget to add the id of this model.
3. Enjoy!
## Training
![Trained with Helibrunna](banner.jpg)
Trained with [Helibrunna](https://github.com/AI-Guru/helibrunna) by [Dr. Tristan Behrens](https://de.linkedin.com/dr-tristan-behrens-734967a2).
## Configuration
```
training:
model_name: bach_garland_phariaplusplus
batch_size: 12
lr: 0.001
lr_warmup_steps: 2083
lr_decay_until_steps: 20833
lr_decay_factor: 0.001
weight_decay: 0.1
amp_precision: bfloat16
weight_precision: float32
enable_mixed_precision: true
num_epochs: 5
output_dir: output/bach_garland_phariaplusplus
save_every_step: 500
log_every_step: 10
wandb_project: bach_garland
torch_compile: false
model:
type: pharia
attention_bias: true
attention_dropout: 0.0
eos_token_id: 0
bos_token_id: 127179
pad_token_id: 1
hidden_act: gelu
hidden_size: 512
initializer_range: 0.02
intermediate_size: 1024
max_position_embeddings: 2048
mlp_bias: true
num_attention_heads: 8
num_hidden_layers: 6
num_key_value_heads: 8
rope_scaling: null
rope_theta: 1000000
tie_word_embeddings: false
use_cache: true
context_length: 2048
vocab_size: 178
dataset:
hugging_face_id: TristanBehrens/bach_garland_2024-100K
tokenizer:
type: whitespace
fill_token: '[EOS]'
```