metadata
library_name: transformers
license: mit
base_model: microsoft/git-base
tags:
- generated_from_trainer
model-index:
- name: git-base-bdd100k
results: []
git-base-bdd100k
This model is a fine-tuned version of microsoft/git-base on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.4069
- Wer Score: 1.7469
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 35
- eval_batch_size: 35
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 70
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 100
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Wer Score |
---|---|---|---|---|
10.5843 | 1.0 | 3 | 9.3667 | 6.8626 |
9.2401 | 2.0 | 6 | 8.8728 | 6.9596 |
8.7545 | 3.0 | 9 | 8.2995 | 3.9543 |
8.2253 | 4.0 | 12 | 7.8495 | 6.1327 |
7.815 | 5.0 | 15 | 7.4921 | 6.4292 |
7.4785 | 6.0 | 18 | 7.1823 | 5.6943 |
7.1794 | 7.0 | 21 | 6.8969 | 6.7444 |
6.9018 | 8.0 | 24 | 6.6233 | 7.2815 |
6.633 | 9.0 | 27 | 6.3577 | 6.2946 |
6.3716 | 10.0 | 30 | 6.0982 | 3.9794 |
6.1145 | 11.0 | 33 | 5.8410 | 1.7244 |
5.8587 | 12.0 | 36 | 5.5841 | 1.3375 |
5.6036 | 13.0 | 39 | 5.3301 | 1.2846 |
5.3508 | 14.0 | 42 | 5.0789 | 1.2795 |
5.1004 | 15.0 | 45 | 4.8313 | 1.2645 |
4.8522 | 16.0 | 48 | 4.5858 | 1.3498 |
4.607 | 17.0 | 51 | 4.3436 | 1.3841 |
4.363 | 18.0 | 54 | 4.1048 | 1.3598 |
4.1205 | 19.0 | 57 | 3.8677 | 1.3941 |
3.8822 | 20.0 | 60 | 3.6347 | 1.4838 |
3.6467 | 21.0 | 63 | 3.4047 | 1.5396 |
3.4146 | 22.0 | 66 | 3.1813 | 1.5850 |
3.1857 | 23.0 | 69 | 2.9609 | 1.5897 |
2.9594 | 24.0 | 72 | 2.7443 | 1.7628 |
2.7404 | 25.0 | 75 | 2.5347 | 1.7511 |
2.5251 | 26.0 | 78 | 2.3310 | 1.8832 |
2.3179 | 27.0 | 81 | 2.1342 | 1.8400 |
2.1174 | 28.0 | 84 | 1.9478 | 1.8548 |
1.9222 | 29.0 | 87 | 1.7691 | 1.8977 |
1.7389 | 30.0 | 90 | 1.6009 | 1.9543 |
1.5638 | 31.0 | 93 | 1.4450 | 2.1109 |
1.4006 | 32.0 | 96 | 1.3019 | 2.0713 |
1.2486 | 33.0 | 99 | 1.1684 | 2.2235 |
1.1087 | 34.0 | 102 | 1.0515 | 1.9969 |
0.9815 | 35.0 | 105 | 0.9437 | 2.1112 |
0.8688 | 36.0 | 108 | 0.8525 | 2.1831 |
0.766 | 37.0 | 111 | 0.7711 | 2.0917 |
0.6799 | 38.0 | 114 | 0.7014 | 2.2617 |
0.6043 | 39.0 | 117 | 0.6455 | 2.3133 |
0.5357 | 40.0 | 120 | 0.5936 | 1.9220 |
0.4756 | 41.0 | 123 | 0.5531 | 2.4083 |
0.424 | 42.0 | 126 | 0.5178 | 2.1998 |
0.3795 | 43.0 | 129 | 0.4884 | 2.2793 |
0.3425 | 44.0 | 132 | 0.4695 | 2.2614 |
0.3132 | 45.0 | 135 | 0.4543 | 2.1388 |
0.2835 | 46.0 | 138 | 0.4319 | 2.2199 |
0.2573 | 47.0 | 141 | 0.4201 | 1.9774 |
0.2339 | 48.0 | 144 | 0.4066 | 2.4571 |
0.2144 | 49.0 | 147 | 0.4033 | 1.7444 |
0.1966 | 50.0 | 150 | 0.3948 | 2.3091 |
0.1811 | 51.0 | 153 | 0.3861 | 1.9247 |
0.1687 | 52.0 | 156 | 0.3846 | 2.1204 |
0.1549 | 53.0 | 159 | 0.3833 | 2.0151 |
0.1441 | 54.0 | 162 | 0.3762 | 1.8776 |
0.1339 | 55.0 | 165 | 0.3786 | 1.8495 |
0.1231 | 56.0 | 168 | 0.3776 | 2.0407 |
0.1123 | 57.0 | 171 | 0.3757 | 2.0056 |
0.1042 | 58.0 | 174 | 0.3772 | 1.7985 |
0.0957 | 59.0 | 177 | 0.3776 | 1.9055 |
0.0881 | 60.0 | 180 | 0.3764 | 1.8409 |
0.0801 | 61.0 | 183 | 0.3811 | 1.9128 |
0.0743 | 62.0 | 186 | 0.3796 | 1.6321 |
0.0693 | 63.0 | 189 | 0.3778 | 1.7338 |
0.0634 | 64.0 | 192 | 0.3818 | 1.8191 |
0.0594 | 65.0 | 195 | 0.3834 | 1.7001 |
0.0543 | 66.0 | 198 | 0.3770 | 1.7305 |
0.0506 | 67.0 | 201 | 0.3835 | 1.7450 |
0.0466 | 68.0 | 204 | 0.3867 | 1.6380 |
0.0447 | 69.0 | 207 | 0.3875 | 1.7717 |
0.0413 | 70.0 | 210 | 0.3879 | 1.7280 |
0.0395 | 71.0 | 213 | 0.3899 | 1.6834 |
0.0366 | 72.0 | 216 | 0.3897 | 1.8994 |
0.0352 | 73.0 | 219 | 0.3913 | 1.8119 |
0.0326 | 74.0 | 222 | 0.3931 | 1.7511 |
0.0314 | 75.0 | 225 | 0.3925 | 1.7907 |
0.0298 | 76.0 | 228 | 0.3966 | 1.7662 |
0.0287 | 77.0 | 231 | 0.3940 | 1.7327 |
0.0272 | 78.0 | 234 | 0.3963 | 1.7745 |
0.0267 | 79.0 | 237 | 0.3995 | 1.8200 |
0.0253 | 80.0 | 240 | 0.3991 | 1.7899 |
0.0249 | 81.0 | 243 | 0.4008 | 1.7910 |
0.0237 | 82.0 | 246 | 0.3997 | 1.8565 |
0.0231 | 83.0 | 249 | 0.4015 | 1.7687 |
0.0225 | 84.0 | 252 | 0.4015 | 1.7093 |
0.0217 | 85.0 | 255 | 0.4012 | 1.7667 |
0.0212 | 86.0 | 258 | 0.4024 | 1.7938 |
0.0205 | 87.0 | 261 | 0.4037 | 1.7821 |
0.0203 | 88.0 | 264 | 0.4041 | 1.8085 |
0.02 | 89.0 | 267 | 0.4041 | 1.8275 |
0.0193 | 90.0 | 270 | 0.4051 | 1.7912 |
0.0192 | 91.0 | 273 | 0.4059 | 1.7508 |
0.0188 | 92.0 | 276 | 0.4059 | 1.7355 |
0.0185 | 93.0 | 279 | 0.4055 | 1.7322 |
0.0183 | 94.0 | 282 | 0.4055 | 1.7255 |
0.0181 | 95.0 | 285 | 0.4060 | 1.7302 |
0.0177 | 96.0 | 288 | 0.4065 | 1.7414 |
0.0174 | 97.0 | 291 | 0.4067 | 1.7483 |
0.0177 | 98.0 | 294 | 0.4069 | 1.7464 |
0.0174 | 99.0 | 297 | 0.4069 | 1.7489 |
0.0175 | 100.0 | 300 | 0.4069 | 1.7469 |
Framework versions
- Transformers 4.45.2
- Pytorch 2.5.0+cu124
- Datasets 3.0.2
- Tokenizers 0.20.1