|
--- |
|
language: |
|
- ain |
|
pipeline_tag: translation |
|
license: cc-by-nc-4.0 |
|
--- |
|
|
|
# Disclaimer |
|
This model is only a preliminary experimental result. This model's capability is at best limited and unreliable. |
|
|
|
# Acknowledgements |
|
I am indebted to [Michal Ptaszynski](https://huggingface.co/ptaszynski) for his guidance and encouragement, [Karol Nowakowski](https://huggingface.co/karolnowakowski) for his work to compile an expansive parallel corpus, [David Dale](https://huggingface.co/cointegrated) for his [Medium article](https://cointegrated.medium.com/how-to-fine-tune-a-nllb-200-model-for-translating-a-new-language-a37fc706b865) that helped me to quickly and smoothly take my first steps. |
|
|
|
# How to use this model |
|
The following is adapted from [slone/nllb-rus-tyv-v1](https://huggingface.co/slone/nllb-rus-tyv-v1). |
|
|
|
```Python |
|
# the version of transformers is important! |
|
!pip install sentencepiece transformers==4.33 > /dev/null |
|
import torch |
|
from transformers import NllbTokenizer, AutoModelForSeq2SeqLM |
|
|
|
def fix_tokenizer(tokenizer, new_lang): |
|
""" Add a new language token to the tokenizer vocabulary (this should be done each time after its initialization) """ |
|
old_len = len(tokenizer) - int(new_lang in tokenizer.added_tokens_encoder) |
|
tokenizer.lang_code_to_id[new_lang] = old_len-1 |
|
tokenizer.id_to_lang_code[old_len-1] = new_lang |
|
# always move "mask" to the last position |
|
tokenizer.fairseq_tokens_to_ids["<mask>"] = len(tokenizer.sp_model) + len(tokenizer.lang_code_to_id) + tokenizer.fairseq_offset |
|
|
|
tokenizer.fairseq_tokens_to_ids.update(tokenizer.lang_code_to_id) |
|
tokenizer.fairseq_ids_to_tokens = {v: k for k, v in tokenizer.fairseq_tokens_to_ids.items()} |
|
if new_lang not in tokenizer._additional_special_tokens: |
|
tokenizer._additional_special_tokens.append(new_lang) |
|
# clear the added token encoder; otherwise a new token may end up there by mistake |
|
tokenizer.added_tokens_encoder = {} |
|
tokenizer.added_tokens_decoder = {} |
|
|
|
MODEL_URL = "TwentyNine/nllb-ain-kana-latin-converter-v1" |
|
model = AutoModelForSeq2SeqLM.from_pretrained(MODEL_URL) |
|
tokenizer = NllbTokenizer.from_pretrained(MODEL_URL) |
|
fix_tokenizer(tokenizer, 'ain_Japn') |
|
fix_tokenizer(tokenizer, 'ain_Latn') |
|
|
|
def convert( |
|
text, |
|
model=model, |
|
tokenizer=tokenizer, |
|
src_lang='ain_Japn', |
|
tgt_lang='ain_Latn', |
|
max_length='auto', |
|
num_beams=4, |
|
n_out=None, |
|
**kwargs |
|
): |
|
tokenizer.src_lang = src_lang |
|
encoded = tokenizer(text, return_tensors="pt", truncation=True, max_length=512) |
|
if max_length == 'auto': |
|
max_length = int(32 + 2.0 * encoded.input_ids.shape[1]) |
|
model.eval() |
|
generated_tokens = model.generate( |
|
**encoded.to(model.device), |
|
forced_bos_token_id=tokenizer.lang_code_to_id[tgt_lang], |
|
max_length=max_length, |
|
num_beams=num_beams, |
|
num_return_sequences=n_out or 1, |
|
**kwargs |
|
) |
|
out = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) |
|
if isinstance(text, str) and n_out is None: |
|
return out[0] |
|
return |
|
|
|
convert("γγ€γγ»γΏγγ―γ³γ³γγ«γΉγ€") |
|
# GOOD: 'pon seta ku=kor rusuy' |
|
|
|
convert("γΏγ³γ γγ£γγγγͺγ«γ³γγγ€γ§") |
|
# OK: 'tanto γγ£γγ or un paye' |
|
# IDEAL: 'tanto GAKKO or un paye' or 'tanto GAKKOU or un paye' |
|
|
|
convert("γ»γ³οΎγγγ¦γ§γ’γ³γγ³οΎγγ€γ·γ¬γγ") |
|
# WRONG: 'sekor hawean korsiren hine' |
|
# IDEAL: 'sekor hawean kor i=siren hine' |
|
``` |