|
--- |
|
license: apache-2.0 |
|
datasets: |
|
- UCSC-VLAA/Recap-DataComp-1B |
|
--- |
|
# Model Card for ViT-H-14-CLIPS-224-Recap-DataComp-1B |
|
|
|
## Model Details |
|
|
|
<!-- Provide the basic links for the model. --> |
|
|
|
- **Repository:** https://github.com/UCSC-VLAA/CLIPS |
|
- **Paper:** https://arxiv.org/abs/2411.16828 |
|
- **Project Page:** https://ucsc-vlaa.github.io/CLIPS/ |
|
|
|
## Model Usage |
|
### With OpenCLIP |
|
#### Note: We made modifications to the tokenizer implementation in open_clip/tokenizer.py. |
|
#### For more details, refer to https://github.com/UCSC-VLAA/CLIPS. |
|
|
|
``` |
|
import torch |
|
import torch.nn.functional as F |
|
from urllib.request import urlopen |
|
from PIL import Image |
|
from open_clip import create_model_from_pretrained, get_tokenizer |
|
|
|
model, preprocess = create_model_from_pretrained('hf-hub:UCSC-VLAA/ViT-H-14-CLIPS-224-Recap-DataComp-1B') |
|
tokenizer = get_tokenizer('hf-hub:UCSC-VLAA/ViT-H-14-CLIPS-224-Recap-DataComp-1B') |
|
|
|
image = Image.open(urlopen( |
|
'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png' |
|
)) |
|
image = preprocess(image).unsqueeze(0) |
|
|
|
text = tokenizer(["a diagram", "a dog", "a cat", "a beignet"], context_length=model.context_length) |
|
|
|
with torch.no_grad(), torch.cuda.amp.autocast(): |
|
image_features = model.encode_image(image) |
|
text_features = model.encode_text(text) |
|
image_features = F.normalize(image_features, dim=-1) |
|
text_features = F.normalize(text_features, dim=-1) |
|
|
|
text_probs = (100.0 * image_features @ text_features.T).softmax(dim=-1) |
|
|
|
print("Label probs:", text_probs) # prints: [[0., 0., 0., 1.0]] |
|
``` |