metadata
license: other
base_model: vgaraujov/bart-base-spanish
tags:
- generated_from_trainer
metrics:
- rouge
model-index:
- name: barto_prompts
results: []
language:
- es
library_name: transformers
pipeline_tag: text2text-generation
widget:
- text: >-
Resume la emergencia: Buenos días estoy en el transporte público de mi
ciudad, a una pasajera le están dando ataques de epilepsia, el señor
conductor dice que estamos en el sector 42. La pasajera tiene
aproximadamente 33 años por favor ayúdenos.
example_title: Text summarization
- text: >-
Extrae las palabras clave de la emergencia: Buenas tardes, estoy viendo un
incendio forestal enorme en el sector 12, envíen ayuda por favor.
example_title: Keyword extraction
- text: >-
La palabra que mejor representa la emergencia es: Buenas noches, le acaban
de robar el celular a mi amigo, envíen a la policía por favor.
example_title: Word representation
- text: >-
Clasifica la emergencia en [CLAVE ROJA, CLAVE NARANJA, CLAVE AMARILLA,
CLAVE VERDE]: Buenos días, me podrían ayudar por favor un vehículo se
encuentra obstaculizando mi estacionamiento.
example_title: Text classification
barto_prompts
This model is a fine-tuned version of vgaraujov/bart-base-spanish. It achieves the following results on the evaluation set:
- Loss: 0.5242
- Rouge1: 77.7794
- Rouge2: 62.5213
- Rougel: 77.3853
- Rougelsum: 77.2245
- Gen Len: 11.6686
Model description
This checkpoint uses BARTO as base model and different prefix to achieve different tasks in emergency transcribed calls:
- "Resume la emergencia: ": For text summarization
- "Extrae las palabras clave de la emergencia: ": For keyword extraction
- "La palabra que mejor representa la emergencia es: ": Gives a word that represents the text
- "Clasifica la emergencia en [CLAVE ROJA, CLAVE NARANJA, CLAVE AMARILLA, CLAVE VERDE]: ": For text classification
Intended uses & limitations
Under privacy agreement.
Training and evaluation data
Training data used has been provided by the ECU 911 service under a strict confidentiality agreement.
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 16
- eval_batch_size: 16
- seed: 42
- distributed_type: multi-GPU
- num_devices: 3
- total_train_batch_size: 48
- total_eval_batch_size: 48
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 10
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len |
---|---|---|---|---|---|---|---|---|
1.3631 | 1.0 | 92 | 0.6643 | 66.5661 | 49.8557 | 66.156 | 66.0723 | 10.7803 |
0.607 | 2.0 | 184 | 0.5528 | 72.4516 | 55.3295 | 72.0424 | 71.9591 | 10.8390 |
0.4994 | 3.0 | 276 | 0.5330 | 74.2798 | 56.9793 | 73.6683 | 73.6271 | 10.9072 |
0.4215 | 4.0 | 368 | 0.5246 | 75.5697 | 58.5086 | 75.1434 | 75.0331 | 11.5663 |
0.3744 | 5.0 | 460 | 0.5302 | 75.9054 | 60.4386 | 75.4245 | 75.294 | 11.6496 |
0.3392 | 6.0 | 552 | 0.5238 | 76.8758 | 61.7901 | 76.4882 | 76.444 | 11.7254 |
0.3014 | 7.0 | 644 | 0.5302 | 76.8835 | 61.9104 | 76.4603 | 76.3661 | 11.6117 |
0.2807 | 8.0 | 736 | 0.5239 | 77.4479 | 62.0839 | 77.0472 | 76.8683 | 11.5417 |
0.265 | 9.0 | 828 | 0.5210 | 77.5274 | 62.249 | 77.1446 | 76.9984 | 11.5890 |
0.2594 | 10.0 | 920 | 0.5242 | 77.7794 | 62.5213 | 77.3853 | 77.2245 | 11.6686 |
Framework versions
- Transformers 4.36.2
- Pytorch 2.1.2+cu121
- Datasets 2.16.1
- Tokenizers 0.15.0