|
--- |
|
language: |
|
- en |
|
tags: |
|
- onnx |
|
- question-answering |
|
- bert |
|
- adapter-transformers |
|
datasets: |
|
- ucinlp/drop |
|
inference: false |
|
--- |
|
|
|
# ONNX export of Adapter `AdapterHub/bert-base-uncased-pf-drop` for bert-base-uncased |
|
## Conversion of [AdapterHub/bert-base-uncased-pf-drop](https://huggingface.co/AdapterHub/bert-base-uncased-pf-drop) for UKP SQuARE |
|
|
|
|
|
## Usage |
|
```python |
|
onnx_path = hf_hub_download(repo_id='UKP-SQuARE/bert-base-uncased-pf-drop-onnx', filename='model.onnx') # or model_quant.onnx for quantization |
|
onnx_model = InferenceSession(onnx_path, providers=['CPUExecutionProvider']) |
|
|
|
context = 'ONNX is an open format to represent models. The benefits of using ONNX include interoperability of frameworks and hardware optimization.' |
|
question = 'What are advantages of ONNX?' |
|
tokenizer = AutoTokenizer.from_pretrained('UKP-SQuARE/bert-base-uncased-pf-drop-onnx') |
|
|
|
inputs = tokenizer(question, context, padding=True, truncation=True, return_tensors='np') |
|
inputs_int64 = {key: np.array(inputs[key], dtype=np.int64) for key in inputs} |
|
outputs = onnx_model.run(input_feed=dict(inputs_int64), output_names=None) |
|
``` |
|
|
|
## Architecture & Training |
|
|
|
The training code for this adapter is available at https://github.com/adapter-hub/efficient-task-transfer. |
|
In particular, training configurations for all tasks can be found [here](https://github.com/adapter-hub/efficient-task-transfer/tree/master/run_configs). |
|
|
|
|
|
## Evaluation results |
|
|
|
Refer to [the paper](https://arxiv.org/pdf/2104.08247) for more information on results. |
|
|
|
## Citation |
|
|
|
If you use this adapter, please cite our paper ["What to Pre-Train on? Efficient Intermediate Task Selection"](https://arxiv.org/pdf/2104.08247): |
|
|
|
```bibtex |
|
@inproceedings{poth-etal-2021-pre, |
|
title = "{W}hat to Pre-Train on? {E}fficient Intermediate Task Selection", |
|
author = {Poth, Clifton and |
|
Pfeiffer, Jonas and |
|
R{"u}ckl{'e}, Andreas and |
|
Gurevych, Iryna}, |
|
booktitle = "Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing", |
|
month = nov, |
|
year = "2021", |
|
address = "Online and Punta Cana, Dominican Republic", |
|
publisher = "Association for Computational Linguistics", |
|
url = "https://aclanthology.org/2021.emnlp-main.827", |
|
pages = "10585--10605", |
|
} |
|
``` |