UNIST-Eunchan's picture
Update README.md
591097e
|
raw
history blame
2.49 kB
metadata
base_model: google/pegasus-x-base
tags:
  - generated_from_trainer
datasets:
  - arxiv-summarization
model-index:
  - name: Paper-Summarization-ArXiv
    results:
      - task:
          name: Summarization
          type: summarization
        dataset:
          name: ccdv/arxiv-summarization
          type: ccdv/arxiv-summarization
          config: section
          split: test
          args: section
        metrics:
          - name: ROUGE-1
            type: rouge
            value: 43.2305
          - name: ROUGE-2
            type: rouge
            value: 16.6571
          - name: ROUGE-L
            type: rouge
            value: 24.4315
          - name: ROUGE-LSum
            type: rouge
            value: 33.9399

Paper-Summarization-ArXiv

This model is a fine-tuned version of google/pegasus-x-base on the arxiv-summarization dataset.

It achieves the following results on the evaluation set:

  • Loss: 2.0127

Training results

Training Loss Epoch Step Validation Loss
2.6153 1.0 3172 2.1045
2.202 2.0 6344 2.0511
2.1547 3.0 9516 2.0282
2.132 4.0 12688 2.0164
2.1222 5.0 15860 2.0127

Model description

More information needed

Intended uses & limitations

Paper Summarization

Compare to Baseline

  • Pegasus-X-base Zero-shot Performance:
    • ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-LSUM : 6.2269 | 0.7894 | 4.6905 | 5.4591
  • Our Model (Generated with length_penalty=1, num_beams=2, max_length=128*4,min_length=150, no_repeat_ngram_size= 3, top_k=25,top_p=0.95)
    • ROUGE-1 | ROUGE-2 | ROUGE-L | ROUGE-LSUM : 43.2305 | 16.6571 | 24.4315 | 33.9399

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 64
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1586
  • num_epochs: 5

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.1
  • Datasets 2.12.0
  • Tokenizers 0.13.2