w2v2-bert-urdu / README.md
UmarRamzan's picture
Update README.md
2aabc69 verified
metadata
license: mit
base_model: UmarRamzan/w2v2-bert-urdu
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: w2v2-bert-urdu
    results: []
language:
  - ur
datasets:
  - mozilla-foundation/common_voice_17_0

Wav2Vec-Bert-2.0-Urdu

This model is a fine-tuned version of facebook/w2v-bert-2.0 on the Urdu split of the Common Voice 17 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3681
  • Wer: 0.2929

Usage Instructions

from transformers import AutoFeatureExtractor, Wav2Vec2BertModel
import torch
from datasets import load_dataset

dataset = load_dataset("hf-internal-testing/librispeech_asr_demo", "clean", split="validation")
dataset = dataset.sort("id")
sampling_rate = dataset.features["audio"].sampling_rate

processor = AutoProcessor.from_pretrained("UmarRamzan/w2v2-bert-urdu")
model = Wav2Vec2BertModel.from_pretrained("UmarRamzan/w2v2-bert-urdu")

# audio file is decoded on the fly
inputs = processor(dataset[0]["audio"]["array"], sampling_rate=sampling_rate, return_tensors="pt")
with torch.no_grad():
    outputs = model(**inputs)

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 100
  • num_epochs: 1
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Wer
0.4362 0.1695 50 0.4144 0.3213
0.3776 0.3390 100 0.4029 0.3137
0.3918 0.5085 150 0.4095 0.3060
0.3968 0.6780 200 0.3961 0.3060
0.3685 0.8475 250 0.3681 0.2929

Framework versions

  • Transformers 4.40.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.19.1
  • Tokenizers 0.19.1