Umong's picture
End of training
c76e131
|
raw
history blame
5.09 kB
metadata
license: apache-2.0
base_model: facebook/wav2vec2-xls-r-300m
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-bengali-macro
    results: []

wav2vec2-xls-r-300m-bengali-macro

This model is a fine-tuned version of facebook/wav2vec2-xls-r-300m on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 2.3787
  • Wer: 0.88

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 1
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Wer
4.686 0.02 500 2.9368 0.9254
1.465 0.03 1000 1.6714 0.88
1.2139 0.05 1500 1.6254 0.8292
1.1463 0.07 2000 1.5170 0.8292
1.12 0.08 2500 1.4973 0.7966
1.0766 0.1 3000 1.5682 0.8129
1.0547 0.12 3500 1.3838 0.7458
1.0163 0.13 4000 1.6073 0.8685
1.0149 0.15 4500 1.3993 0.7247
1.0125 0.17 5000 1.4888 0.7749
0.9882 0.18 5500 1.3766 0.7444
0.9736 0.2 6000 1.5816 0.8027
0.9737 0.22 6500 1.5761 0.7783
0.9445 0.23 7000 1.3593 0.7505
0.9335 0.25 7500 1.3453 0.7247
0.931 0.27 8000 1.4024 0.7397
0.9389 0.28 8500 1.5973 0.8508
0.9152 0.3 9000 1.4021 0.7193
0.9042 0.32 9500 1.3642 0.7620
0.8962 0.33 10000 1.4298 0.7383
0.8767 0.35 10500 1.4478 0.7580
0.8853 0.37 11000 1.3255 0.7302
0.8739 0.38 11500 1.3791 0.7431
0.8597 0.4 12000 1.5847 0.8325
0.8815 0.42 12500 1.6785 0.8163
0.8736 0.43 13000 1.6222 0.7871
0.8643 0.45 13500 1.8635 0.8502
0.84 0.46 14000 1.4343 0.7803
0.8323 0.48 14500 1.7500 0.8427
0.8223 0.5 15000 1.6916 0.8278
0.827 0.51 15500 2.6214 0.9085
0.8149 0.53 16000 1.6750 0.8169
0.8149 0.55 16500 1.7646 0.8142
0.8032 0.56 17000 2.1347 0.8617
0.8005 0.58 17500 1.7216 0.8122
0.7956 0.6 18000 2.3053 0.8936
0.7888 0.61 18500 1.7773 0.8359
0.7919 0.63 19000 2.2394 0.8597
0.7888 0.65 19500 1.5470 0.7403
0.7721 0.66 20000 1.6034 0.7593
0.7603 0.68 20500 1.6808 0.7803
0.751 0.7 21000 1.7942 0.8217
0.7555 0.71 21500 1.9897 0.8441
0.7583 0.73 22000 2.3329 0.8576
0.7346 0.75 22500 2.2255 0.8515
0.754 0.76 23000 2.2606 0.8861
0.7309 0.78 23500 2.0292 0.8529
0.7351 0.8 24000 2.4471 0.8942
0.7456 0.81 24500 2.1406 0.8224
0.7229 0.83 25000 2.4474 0.8888
0.7253 0.85 25500 2.0324 0.8441
0.7109 0.86 26000 2.2594 0.8671
0.7316 0.88 26500 2.3887 0.8827
0.716 0.9 27000 2.4739 0.8915
0.7264 0.91 27500 2.4291 0.8922
0.701 0.93 28000 2.3306 0.8936
0.7025 0.95 28500 2.3172 0.8834
0.6963 0.96 29000 2.4020 0.8841
0.6952 0.98 29500 2.4324 0.8895
0.6985 1.0 30000 2.3787 0.88

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.14.5
  • Tokenizers 0.13.3