Umong's picture
End of training
24846f2
|
raw
history blame
3.25 kB
metadata
base_model: Umong/wav2vec2-xls-r-300m-bengali
tags:
  - generated_from_trainer
metrics:
  - wer
model-index:
  - name: wav2vec2-xls-r-300m-bengali
    results: []

wav2vec2-xls-r-300m-bengali

This model is a fine-tuned version of Umong/wav2vec2-xls-r-300m-bengali on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1636
  • Wer: 0.0883

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 16
  • eval_batch_size: 8
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5

Training results

Training Loss Epoch Step Validation Loss Wer
5.3076 0.16 400 1.5883 0.9394
0.8841 0.33 800 0.5188 0.5337
0.5896 0.49 1200 0.4029 0.4340
0.4964 0.66 1600 0.3429 0.3766
0.4553 0.82 2000 0.3196 0.3642
0.4222 0.99 2400 0.3004 0.3436
0.3709 1.15 2800 0.2812 0.3225
0.352 1.32 3200 0.2753 0.3124
0.3283 1.48 3600 0.2616 0.2979
0.3235 1.65 4000 0.2573 0.2944
0.3129 1.81 4400 0.2458 0.2809
0.306 1.98 4800 0.2344 0.2771
0.2701 2.14 5200 0.2318 0.2661
0.2653 2.31 5600 0.2253 0.2629
0.2626 2.47 6000 0.2186 0.2542
0.2541 2.63 6400 0.2074 0.2474
0.2235 2.8 6800 0.2102 0.2442
0.2185 2.96 7200 0.2019 0.2327
0.2061 3.13 7600 0.1994 0.2308
0.2011 3.29 8000 0.1942 0.2260
0.1986 3.46 8400 0.1867 0.2187
0.197 3.62 8800 0.1825 0.2177
0.1931 3.79 9200 0.1856 0.2153
0.1879 3.95 9600 0.1777 0.2088
0.1599 4.12 10000 0.1781 0.0968
0.153 4.28 10400 0.1738 0.0944
0.1475 4.45 10800 0.1713 0.0905
0.1448 4.61 11200 0.1683 0.0907
0.1445 4.78 11600 0.1649 0.0897
0.1423 4.94 12000 0.1636 0.0883

Framework versions

  • Transformers 4.33.0
  • Pytorch 2.0.0
  • Datasets 2.14.5
  • Tokenizers 0.13.3