Training procedure

The following bitsandbytes quantization config was used during training:

  • quant_method: bitsandbytes
  • load_in_8bit: True
  • load_in_4bit: False
  • llm_int8_threshold: 6.0
  • llm_int8_skip_modules: None
  • llm_int8_enable_fp32_cpu_offload: False
  • llm_int8_has_fp16_weight: False
  • bnb_4bit_quant_type: nf4
  • bnb_4bit_use_double_quant: True
  • bnb_4bit_compute_dtype: bfloat16

Framework versions

  • PEFT 0.5.0

I'm NOT the author of this work.

I cite anon :

Storytelling-V2 Qlora. Trained on base Llama-2-13B, works on every L2 13B.
150.5MB of books. Over ten thousand 4096 token samples.
*** for separating chapters, ⁂ for separating books.

Credit to "anon49"

Downloads last month
12
Inference API
Unable to determine this model’s pipeline type. Check the docs .

Model tree for Undi95/Storytelling-v2-13B-lora

Adapter
(5)
this model