moonshine-base / modeling_moonshine.py
njeffrie's picture
Update moonshine to support batch decoding
2ef02e9 verified
from einops import rearrange
from einops.layers.torch import Rearrange
from torch import nn
from transformers import PreTrainedModel
import math
import torch
from .configuration_moonshine import MoonshineConfig
class RotaryEmbedding(nn.Module):
def __init__(self, dim, base=10000):
super().__init__()
inv_freq = 1.0 / (base ** (torch.arange(0, dim, 2).float() / dim))
self.register_buffer("inv_freq", inv_freq, persistent=False)
def forward(self, t):
freqs = torch.einsum("i , j -> i j", t.type_as(self.inv_freq), self.inv_freq)
freqs = torch.stack((freqs, freqs), dim=-1)
return rearrange(freqs, "... d r -> ... (d r)")
def rotate_half(x):
x = rearrange(x, "... (d r) -> ... d r", r=2)
x1, x2 = x.unbind(dim=-1)
x = torch.stack((-x2, x1), dim=-1)
return rearrange(x, "... d r -> ... (d r)")
def apply_rotary_pos_emb(t, freqs):
rot_dim, seq_len, orig_dtype = freqs.shape[-1], t.shape[-2], t.dtype
freqs = freqs[-seq_len:, :]
# partial rotary embeddings, Wang et al. GPT-J
t, t_unrotated = t[..., :rot_dim], t[..., rot_dim:]
t = t * freqs.cos() + rotate_half(t) * freqs.sin()
out = torch.cat((t, t_unrotated), dim=-1)
return out.type(orig_dtype)
class MultiHeadAttention(nn.Module):
def __init__(self, dim, inner_dim, n_head):
super().__init__()
self.n_head = n_head
self.to_q = nn.Linear(dim, inner_dim, bias=False)
self.to_k = nn.Linear(dim, inner_dim, bias=False)
self.to_v = nn.Linear(dim, inner_dim, bias=False)
self.to_out = nn.Linear(inner_dim, dim, bias=False)
self.softmax = nn.Softmax(dim=-1)
# Scaled dot product attention
def sdp_attention(self, q, k_t, v, mask=None):
d_tensor = v.shape[3]
op = (q @ k_t) / math.sqrt(d_tensor)
if mask is not None:
op = op.masked_fill(mask, -torch.finfo(op.dtype).max)
score = self.softmax(op)
out = score @ v
# concat and pass to linear layer
out = rearrange(out, "b h n d -> b n (h d)")
return self.to_out(out)
def forward(self, q, k, v, rot_pos_emb=None, mask=None):
# dot product with weight matrices
q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)
# apply RoPE
if rot_pos_emb is not None:
q = apply_rotary_pos_emb(q, rot_pos_emb)
k = apply_rotary_pos_emb(k, rot_pos_emb)
k_t = k.transpose(2, 3)
return self.sdp_attention(q, k_t, v, mask), k_t, v
class MultiHeadCausalSelfAttentionWithKVCache(MultiHeadAttention):
def __init__(self, dim, inner_dim, n_head):
super().__init__(dim, inner_dim, n_head)
def forward(self, q, k, v, k_cache, v_cache, rot_pos_emb, mask):
# dot product with weight matrices
q, k, v = self.to_q(q), self.to_k(k), self.to_v(v)
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
k = rearrange(k, "b n (h d) -> b h n d", h=self.n_head)
v = rearrange(v, "b n (h d) -> b h n d", h=self.n_head)
# apply RoPE
q = apply_rotary_pos_emb(q, rot_pos_emb)
k = apply_rotary_pos_emb(k, rot_pos_emb)
k_t = k.transpose(2, 3)
# Append new rows to K and V caches.
k_t = torch.concat((k_cache, k_t), dim=3)
v = torch.concat((v_cache, v), dim=2)
return super().sdp_attention(q, k_t, v, mask=mask), k_t, v
class MultiHeadCrossAttentionWithKVCache(MultiHeadAttention):
def __init__(self, dim, inner_dim, n_head):
super().__init__(dim, inner_dim, n_head)
def forward(self, q, k_cache, v_cache):
q = self.to_q(q)
q = rearrange(q, "b n (h d) -> b h n d", h=self.n_head)
return super().sdp_attention(q, k_cache, v_cache)
class FFLinearGelu(nn.Module):
def __init__(self, dim, ff_mult=4):
super().__init__()
self.ff = nn.Sequential(
nn.Linear(dim, dim * ff_mult, bias=True),
nn.GELU(),
nn.Linear(dim * ff_mult, dim, bias=True),
)
def forward(self, x):
return self.ff(x)
class FFSwiGLU(nn.Module):
def __init__(self, dim, ff_mult=4):
super().__init__()
self.ff_proj = nn.Linear(dim, dim * ff_mult, bias=True)
self.ff_noact = nn.Linear(dim, dim * ff_mult, bias=True)
self.ff_act = nn.SiLU()
self.ff_out = nn.Linear(dim * ff_mult, dim, bias=True)
def forward(self, x):
gate = self.ff_act(self.ff_proj(x))
x_noact = self.ff_noact(x)
x = x_noact * gate
return self.ff_out(x)
class EncoderLayer(nn.Module):
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
super().__init__()
self.norm1 = nn.LayerNorm(dim, bias=False)
self.attention = MultiHeadAttention(dim, inner_dim=inner_dim, n_head=n_head)
self.norm2 = nn.LayerNorm(dim, bias=False)
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
def forward(self, x, rot_pos_emb):
_x = x
x = self.norm1(x)
x, _, _ = self.attention(q=x, k=x, v=x, rot_pos_emb=rot_pos_emb)
x = x + _x
_x = x
x = self.norm2(x)
x = self.ff(x)
x = x + _x
return x
class Encoder(nn.Module):
def __init__(self, dim, inner_dim, n_head, n_layers, ff_swiglu):
super().__init__()
rot_embed_dim = max(inner_dim / n_head / 2, 32)
self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)
self.layers = nn.ModuleList(
[EncoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
)
self.post_norm = nn.LayerNorm(dim, bias=False)
def forward(self, x):
pos = torch.arange(x.shape[1], device=x.device)
rot_pos_emb = self.rot_pos_emb(pos)
for layer in self.layers:
x = layer(x, rot_pos_emb=rot_pos_emb)
return self.post_norm(x)
class DecoderLayer(nn.Module):
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
super().__init__()
self.norm1 = nn.LayerNorm(dim, bias=False)
self.self_attention = MultiHeadCausalSelfAttentionWithKVCache(
dim, inner_dim=inner_dim, n_head=n_head
)
self.norm2 = nn.LayerNorm(dim, bias=False)
self.cross_attention = MultiHeadCrossAttentionWithKVCache(
dim, inner_dim=inner_dim, n_head=n_head
)
self.norm3 = nn.LayerNorm(dim, bias=False)
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
def forward(self, x, k_cache, v_cache, x_attn_k_cache, x_attn_v_cache, rot_pos_emb):
dim = x.size()[1]
causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
_x = x
x = self.norm1(x)
x, new_k_cache, new_v_cache = self.self_attention(
q=x,
k=x,
v=x,
k_cache=k_cache,
v_cache=v_cache,
rot_pos_emb=rot_pos_emb,
mask=causal_mask,
)
x = x + _x
_x = x
x = self.norm2(x)
x = self.cross_attention(q=x, k_cache=x_attn_k_cache, v_cache=x_attn_v_cache)
x = x + _x
_x = x
x = self.norm3(x)
x = self.ff(x)
x = x + _x
return x, new_k_cache, new_v_cache
class Decoder(nn.Module):
def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
super().__init__()
self.n_head = n_head
self.d_head = inner_dim // n_head
rot_embed_dim = max(inner_dim / n_head / 2, 32)
self.rot_pos_emb = RotaryEmbedding(rot_embed_dim)
self.layers = nn.ModuleList(
[DecoderLayer(dim, inner_dim, n_head, ff_swiglu) for _ in range(n_layers)]
)
self.final_norm = nn.LayerNorm(dim, bias=False)
self.token_embedding = nn.Embedding(dec_voc_size, dim)
def forward(self, x, *args):
pos = torch.arange(x.shape[1], device=x.device)
rot_pos_emb = self.rot_pos_emb(pos)
x = self.token_embedding(x)
k_cache_new = []
v_cache_new = []
n_layer = len(self.layers)
k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
args[i : i + n_layer] for i in range(0, 4 * n_layer, n_layer)
]
for idx, layer in enumerate(self.layers):
x, new_k_line, new_v_line = layer(
x[:, -1:],
k_cache=k_cache[idx],
v_cache=v_cache[idx],
x_attn_k_cache=x_attn_k_cache[idx],
x_attn_v_cache=x_attn_v_cache[idx],
rot_pos_emb=rot_pos_emb,
)
k_cache_new.append(new_k_line)
v_cache_new.append(new_v_line)
x = self.final_norm(x)
return x @ self.token_embedding.weight.t(), *k_cache_new, *v_cache_new
class InitialDecoderLayer(nn.Module):
def __init__(self, dim, inner_dim, n_head, ff_swiglu, ff_mult=4):
super().__init__()
self.norm1 = nn.LayerNorm(dim, bias=False)
self.self_attention = MultiHeadAttention(
dim, inner_dim=inner_dim, n_head=n_head
)
self.norm2 = nn.LayerNorm(dim, bias=False)
self.cross_attention = MultiHeadAttention(
dim, inner_dim=inner_dim, n_head=n_head
)
self.norm3 = nn.LayerNorm(dim, bias=False)
self.ff = FFSwiGLU(dim, ff_mult) if ff_swiglu else FFLinearGelu(dim, ff_mult)
def forward(self, x, context, rot_pos_emb):
dim = x.size()[1]
causal_mask = torch.ones((dim, dim), dtype=torch.bool).triu(1).to(x.device)
_x = x
x = self.norm1(x)
x, new_k_cache, new_v_cache = self.self_attention(
q=x,
k=x,
v=x,
rot_pos_emb=rot_pos_emb,
mask=causal_mask,
)
x = x + _x
_x = x
x = self.norm2(x)
x, x_attn_k_cache, x_attn_v_cache = self.cross_attention(
q=x, k=context, v=context
)
x = x + _x
_x = x
x = self.norm3(x)
x = self.ff(x)
x = x + _x
return x, new_k_cache, new_v_cache, x_attn_k_cache, x_attn_v_cache
class DecoderInitial(Decoder):
def __init__(self, dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu):
super().__init__(dim, inner_dim, n_head, n_layers, dec_voc_size, ff_swiglu)
self.layers = nn.ModuleList(
[
InitialDecoderLayer(dim, inner_dim, n_head, ff_swiglu)
for _ in range(n_layers)
]
)
def forward(self, x, enc_src):
pos = torch.arange(x.shape[1], device=x.device)
rot_pos_emb = self.rot_pos_emb(pos)
x = self.token_embedding(x)
# Shape [n_layers, batch_size, n_head, seq_len, inner_dim]. Cache K transposed.
n_layer = len(self.layers)
k_cache = []
v_cache = []
x_attn_k_cache = []
x_attn_v_cache = []
for idx, layer in enumerate(self.layers):
x, new_k_line, new_v_line, new_x_attn_k_line, new_x_attn_v_line = layer(
x,
enc_src,
rot_pos_emb,
)
k_cache.append(new_k_line)
v_cache.append(new_v_line)
x_attn_k_cache.append(new_x_attn_k_line)
x_attn_v_cache.append(new_x_attn_v_line)
x = self.final_norm(x)
return (
x @ self.token_embedding.weight.t(),
*k_cache,
*v_cache,
*x_attn_k_cache,
*x_attn_v_cache,
)
class AudioPreprocessor(nn.Module):
def __init__(self, dim):
super().__init__()
self.audio_preprocess = nn.Sequential(
nn.Conv1d(1, dim, 127, 64, bias=False),
nn.Tanh(),
nn.GroupNorm(1, dim),
nn.Conv1d(dim, 2 * dim, 7, 3),
nn.GELU(),
nn.Conv1d(2 * dim, dim, 3, 2),
nn.GELU(),
Rearrange("... c s -> ... s c"),
)
def forward(self, src):
assert (
src.shape[-1] >= 1023
), f"src shape[-1] {src.shape[-1]} should be at least 1023"
src = src.reshape((-1, 1, src.shape[-1]))
return self.audio_preprocess(src)
class MoonshineModelTorch(nn.Module):
def __init__(
self,
dim,
inner_dim,
enc_depth,
dec_depth,
n_head=8,
dec_voc_size=32768,
enc_ff_swiglu=False,
dec_ff_swiglu=False,
):
super().__init__()
self.preprocessor = AudioPreprocessor(dim)
self.encoder = Encoder(
dim, inner_dim, n_head, enc_depth, ff_swiglu=enc_ff_swiglu
)
self.decoder_initial = DecoderInitial(
dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
)
self.decoder = Decoder(
dim, inner_dim, n_head, dec_depth, dec_voc_size, ff_swiglu=dec_ff_swiglu
)
self.dec_depth = dec_depth
self.n_head = n_head
self.d_head = inner_dim // n_head
def generate(self, src):
preprocessed = self.preprocessor(src)
enc = self.encoder(preprocessed)
sot_token = 1
eot_token = 2
sot_array = [[sot_token] for _ in range(enc.shape[0])]
seq = torch.as_tensor(sot_array).to(src.device)
vals = self.decoder_initial(x=seq, enc_src=enc)
logits = vals[0]
k_cache, v_cache, x_attn_k_cache, x_attn_v_cache = [
vals[i : i + self.dec_depth]
for i in range(1, 1 + self.dec_depth * 4, self.dec_depth)
]
sample = logits[:, -1].argmax(dim=-1, keepdim=True)
seq = torch.cat((seq, sample), dim=-1)
seq_len = int(src.shape[-1] * 6.5 / 16000)
while any([eot_token not in sub_seq for sub_seq in seq]) and seq.shape[-1] <= seq_len:
vals = self.decoder(
seq,
*k_cache,
*v_cache,
*x_attn_k_cache,
*x_attn_v_cache,
)
logits = vals[0]
k_cache = vals[1 : self.dec_depth + 1]
v_cache = vals[self.dec_depth + 1 :]
logits = logits[:, -1] # get last token
sample = logits.argmax(dim=-1, keepdim=True)
seq = torch.cat((seq, sample), dim=-1)
return seq
class MoonshineModel(PreTrainedModel):
config_class = MoonshineConfig
def __init__(self, config):
super().__init__(config)
self.model = MoonshineModelTorch(
dim = config.dim,
inner_dim = config.inner_dim,
enc_depth = config.enc_depth,
dec_depth = config.dec_depth,
n_head = config.n_head,
dec_voc_size = config.dec_voc_size,
enc_ff_swiglu = config.enc_ff_swiglu,
dec_ff_swiglu = config.dec_ff_swiglu,
)
def forward(self, tensor):
return self.model.generate(tensor)