Edit model card

bertNer-biobert

This model is a fine-tuned version of bert-base-cased on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1284
  • Precision: 0.9471
  • Recall: 0.9630
  • F1: 0.9550
  • Accuracy: 0.9758

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.1851 1.0 1224 0.1186 0.9202 0.9550 0.9373 0.9670
0.1188 2.0 2448 0.1061 0.9349 0.9684 0.9514 0.9737
0.0789 3.0 3672 0.1051 0.9381 0.9710 0.9543 0.9755
0.0569 4.0 4896 0.1062 0.9403 0.9712 0.9555 0.9761
0.0492 5.0 6120 0.1174 0.9403 0.9646 0.9523 0.9734
0.0405 6.0 7344 0.1220 0.9426 0.9638 0.9531 0.9739
0.0355 7.0 8568 0.1175 0.9446 0.9651 0.9548 0.9756
0.0296 8.0 9792 0.1239 0.9446 0.9660 0.9552 0.9757
0.0224 9.0 11016 0.1247 0.9474 0.9640 0.9556 0.9760
0.0219 10.0 12240 0.1284 0.9471 0.9630 0.9550 0.9758

Framework versions

  • Transformers 4.45.1
  • Pytorch 2.4.0
  • Datasets 3.0.1
  • Tokenizers 0.20.0
Downloads last month
12
Safetensors
Model size
108M params
Tensor type
FP16
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Model tree for Vantwoth/bertNer-biobert

Finetuned
(1937)
this model