pn_experiment_v02 / README.md
Varun1010's picture
Add SetFit model
d253689 verified
metadata
base_model: sentence-transformers/paraphrase-MiniLM-L3-v2
library_name: setfit
metrics:
  - accuracy
pipeline_tag: text-classification
tags:
  - setfit
  - sentence-transformers
  - text-classification
  - generated_from_setfit_trainer
widget:
  - text: Inactive
  - text: Siganl
  - text: Default oCndition
  - text: Non-Automatic Operation
  - text: Idel
inference: true
model-index:
  - name: SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2
    results:
      - task:
          type: text-classification
          name: Text Classification
        dataset:
          name: Unknown
          type: unknown
          split: test
        metrics:
          - type: accuracy
            value: 0.7452830188679245
            name: Accuracy

SetFit with sentence-transformers/paraphrase-MiniLM-L3-v2

This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/paraphrase-MiniLM-L3-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.

The model has been trained using an efficient few-shot learning technique that involves:

  1. Fine-tuning a Sentence Transformer with contrastive learning.
  2. Training a classification head with features from the fine-tuned Sentence Transformer.

Model Details

Model Description

Model Sources

Model Labels

Label Examples
1
  • 'Puased'
  • 'Disconnected'
  • 'Ceased'
0
  • 'Self-Regulatnig'
  • 'Tirpped Alarm'
  • 'Launcehd'

Evaluation

Metrics

Label Accuracy
all 0.7453

Uses

Direct Use for Inference

First install the SetFit library:

pip install setfit

Then you can load this model and run inference.

from setfit import SetFitModel

# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("Varun1010/pn_experiment_v02")
# Run inference
preds = model("Idel")

Training Details

Training Set Metrics

Training set Min Median Max
Word count 1 1.3333 3
Label Training Sample Count
0 15
1 15

Training Hyperparameters

  • batch_size: (16, 16)
  • num_epochs: (1, 16)
  • max_steps: 500
  • sampling_strategy: oversampling
  • body_learning_rate: (2e-05, 1e-05)
  • head_learning_rate: 0.01
  • loss: CosineSimilarityLoss
  • distance_metric: cosine_distance
  • margin: 0.25
  • end_to_end: False
  • use_amp: False
  • warmup_proportion: 0.1
  • seed: 42
  • eval_max_steps: -1
  • load_best_model_at_end: False

Training Results

Epoch Step Training Loss Validation Loss
0.125 1 0.2572 -
0.1718 50 0.0095 -
0.3436 100 0.0023 -
0.5155 150 0.0019 -
0.6873 200 0.0016 -
0.8591 250 0.0012 -

Framework Versions

  • Python: 3.10.12
  • SetFit: 1.0.3
  • Sentence Transformers: 3.0.1
  • Transformers: 4.39.0
  • PyTorch: 2.4.0+cu121
  • Datasets: 2.21.0
  • Tokenizers: 0.15.2

Citation

BibTeX

@article{https://doi.org/10.48550/arxiv.2209.11055,
    doi = {10.48550/ARXIV.2209.11055},
    url = {https://arxiv.org/abs/2209.11055},
    author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
    keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
    title = {Efficient Few-Shot Learning Without Prompts},
    publisher = {arXiv},
    year = {2022},
    copyright = {Creative Commons Attribution 4.0 International}
}