results
This model is a fine-tuned version of roberta-large on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.1093
- F1: 0.8624
- Roc Auc: 0.9036
- Accuracy: 0.9395
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.001
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- num_epochs: 7
Training results
Training Loss | Epoch | Step | Validation Loss | F1 | Roc Auc | Accuracy |
---|---|---|---|---|---|---|
No log | 1.0 | 289 | 0.1145 | 0.8019 | 0.8592 | 0.9193 |
0.1486 | 2.0 | 578 | 0.1079 | 0.8357 | 0.8818 | 0.9294 |
0.1486 | 3.0 | 867 | 0.1021 | 0.8511 | 0.8876 | 0.9384 |
0.0655 | 4.0 | 1156 | 0.0979 | 0.8428 | 0.8953 | 0.9314 |
0.0655 | 5.0 | 1445 | 0.1114 | 0.8686 | 0.9171 | 0.9405 |
0.0495 | 6.0 | 1734 | 0.1165 | 0.8429 | 0.8811 | 0.9344 |
0.0323 | 7.0 | 2023 | 0.1093 | 0.8624 | 0.9036 | 0.9395 |
Framework versions
- Transformers 4.38.2
- Pytorch 2.2.1+cu121
- Datasets 2.18.0
- Tokenizers 0.15.2
- Downloads last month
- 5
Model tree for VickyUmath/results
Base model
FacebookAI/roberta-large