DNADebertaSentencepiece30k_continuation_continuation

This model is a fine-tuned version of Vlasta/DNADebertaSentencepiece30k_continuation on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 5.9867

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 64
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss
6.1786 0.41 5000 6.1475
6.1856 0.81 10000 6.1490
6.1769 1.22 15000 6.1370
6.1714 1.62 20000 6.1330
6.1633 2.03 25000 6.1221
6.1548 2.44 30000 6.1180
6.1495 2.84 35000 6.1141
6.1453 3.25 40000 6.1026
6.1362 3.66 45000 6.0984
6.1325 4.06 50000 6.0961
6.1227 4.47 55000 6.0874
6.1215 4.87 60000 6.0806
6.1149 5.28 65000 6.0779
6.1099 5.69 70000 6.0701
6.104 6.09 75000 6.0633
6.0963 6.5 80000 6.0628
6.095 6.91 85000 6.0572
6.0858 7.31 90000 6.0525
6.0895 7.72 95000 6.0430
6.0804 8.12 100000 6.0437
6.0767 8.53 105000 6.0371
6.0748 8.94 110000 6.0312
6.0702 9.34 115000 6.0293
6.0668 9.75 120000 6.0242
6.0615 10.16 125000 6.0213
6.0568 10.56 130000 6.0183
6.0552 10.97 135000 6.0125
6.0496 11.37 140000 6.0087
6.0493 11.78 145000 6.0084
6.0466 12.19 150000 6.0060
6.042 12.59 155000 6.0008
6.0375 13.0 160000 5.9986
6.0345 13.41 165000 5.9940
6.0336 13.81 170000 5.9905
6.0334 14.22 175000 5.9891
6.0313 14.62 180000 5.9887

Framework versions

  • Transformers 4.19.2
  • Pytorch 1.11.0
  • Datasets 2.2.2
  • Tokenizers 0.12.1
Downloads last month
30
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.