logo voicelab nlp

Sentiment Classification in Polish

import numpy as np
from transformers import AutoTokenizer, AutoModelForSequenceClassification

id2label = {0: "negative", 1: "neutral", 2: "positive"}
tokenizer = AutoTokenizer.from_pretrained("Voicelab/herbert-base-cased-sentiment")
model = AutoModelForSequenceClassification.from_pretrained("Voicelab/herbert-base-cased-sentiment")

input = ["Ale fajnie, spadł dzisiaj śnieg! Ulepimy dziś bałwana?"]

encoding = tokenizer(
          input,
          add_special_tokens=True,
          return_token_type_ids=True,
          truncation=True,
          padding='max_length',
          return_attention_mask=True,
          return_tensors='pt',
        )
output = model(**encoding).logits.to("cpu").detach().numpy()
prediction = id2label[np.argmax(output)]
print(input, "--->", prediction)

Predicted output:

['Ale fajnie, spadł dzisiaj śnieg! Ulepimy dziś bałwana?'] ---> positive

Overview

Downloads last month
86
Safetensors
Model size
124M params
Tensor type
I64
·
F32
·
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.