Update README.md
Browse files
README.md
CHANGED
@@ -21,6 +21,8 @@ tokenizer = AutoTokenizer.from_pretrained("Voicelab/herbert-base-cased-sentiment
|
|
21 |
|
22 |
model = AutoModelForSequenceClassification.from_pretrained("Voicelab/herbert-base-cased-sentiment")
|
23 |
|
|
|
|
|
24 |
encoding = tokenizer(
|
25 |
input,
|
26 |
add_special_tokens=True,
|
@@ -29,9 +31,10 @@ encoding = tokenizer(
|
|
29 |
padding='max_length',
|
30 |
return_attention_mask=True,
|
31 |
return_tensors='pt',
|
32 |
-
)
|
33 |
output = model(**encoding).logits.to("cpu").detach().numpy()
|
34 |
prediction = id2label[np.argmax(output)]
|
|
|
35 |
|
36 |
```
|
37 |
|
|
|
21 |
|
22 |
model = AutoModelForSequenceClassification.from_pretrained("Voicelab/herbert-base-cased-sentiment")
|
23 |
|
24 |
+
input = ["Ale fajnie, spadł dzisiaj śnieg! Ulepimy dziś bałwana?"]
|
25 |
+
|
26 |
encoding = tokenizer(
|
27 |
input,
|
28 |
add_special_tokens=True,
|
|
|
31 |
padding='max_length',
|
32 |
return_attention_mask=True,
|
33 |
return_tensors='pt',
|
34 |
+
)
|
35 |
output = model(**encoding).logits.to("cpu").detach().numpy()
|
36 |
prediction = id2label[np.argmax(output)]
|
37 |
+
print(input, "--->", prediction)
|
38 |
|
39 |
```
|
40 |
|