SegFormer_b3_mappillary_

This model is a fine-tuned version of nvidia/segformer-b3-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9471
  • Mean Iou: 0.6940
  • Mean Accuracy: 0.8072
  • Overall Accuracy: 0.9431
  • Accuracy Construction--barrier--fence: 0.7139
  • Accuracy Construction--barrier--guard-rail: 0.7940
  • Accuracy Construction--barrier--other-barrier: 0.7037
  • Accuracy Construction--barrier--wall: 0.7066
  • Accuracy Construction--flat--road: 0.9635
  • Accuracy Construction--flat--service-lane: 0.6054
  • Accuracy Construction--flat--sidewalk: 0.8864
  • Accuracy Construction--structure--building: 0.9471
  • Accuracy Human--person: 0.8464
  • Accuracy Human--rider--bicyclist: 0.7717
  • Accuracy Marking--crosswalk-zebra: 0.8305
  • Accuracy Marking--general: 0.7034
  • Accuracy Nature--sky: 0.9905
  • Accuracy Nature--terrain: 0.8364
  • Accuracy Nature--vegetation: 0.9463
  • Accuracy Object--support--pole: 0.5949
  • Accuracy Object--support--traffic-sign-frame: 0.6872
  • Accuracy Object--traffic-light: 0.7613
  • Accuracy Object--traffic-sign--front: 0.8302
  • Accuracy Object--vehicle--bicycle: 0.7734
  • Accuracy Object--vehicle--bus: 0.8816
  • Accuracy Object--vehicle--car: 0.9634
  • Accuracy Object--vehicle--truck: 0.8290
  • Iou Construction--barrier--fence: 0.5854
  • Iou Construction--barrier--guard-rail: 0.6329
  • Iou Construction--barrier--other-barrier: 0.5635
  • Iou Construction--barrier--wall: 0.5578
  • Iou Construction--flat--road: 0.9223
  • Iou Construction--flat--service-lane: 0.4671
  • Iou Construction--flat--sidewalk: 0.7992
  • Iou Construction--structure--building: 0.8928
  • Iou Human--person: 0.6907
  • Iou Human--rider--bicyclist: 0.5950
  • Iou Marking--crosswalk-zebra: 0.7205
  • Iou Marking--general: 0.5949
  • Iou Nature--sky: 0.9814
  • Iou Nature--terrain: 0.6899
  • Iou Nature--vegetation: 0.8954
  • Iou Object--support--pole: 0.4690
  • Iou Object--support--traffic-sign-frame: 0.5685
  • Iou Object--traffic-light: 0.5949
  • Iou Object--traffic-sign--front: 0.7276
  • Iou Object--vehicle--bicycle: 0.5790
  • Iou Object--vehicle--bus: 0.8005
  • Iou Object--vehicle--car: 0.9072
  • Iou Object--vehicle--truck: 0.7273

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 6e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 1000
  • num_epochs: 20
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Accuracy Construction--barrier--fence Accuracy Construction--barrier--guard-rail Accuracy Construction--barrier--other-barrier Accuracy Construction--barrier--wall Accuracy Construction--flat--road Accuracy Construction--flat--service-lane Accuracy Construction--flat--sidewalk Accuracy Construction--structure--building Accuracy Human--person Accuracy Human--rider--bicyclist Accuracy Marking--crosswalk-zebra Accuracy Marking--general Accuracy Nature--sky Accuracy Nature--terrain Accuracy Nature--vegetation Accuracy Object--support--pole Accuracy Object--support--traffic-sign-frame Accuracy Object--traffic-light Accuracy Object--traffic-sign--front Accuracy Object--vehicle--bicycle Accuracy Object--vehicle--bus Accuracy Object--vehicle--car Accuracy Object--vehicle--truck Iou Construction--barrier--fence Iou Construction--barrier--guard-rail Iou Construction--barrier--other-barrier Iou Construction--barrier--wall Iou Construction--flat--road Iou Construction--flat--service-lane Iou Construction--flat--sidewalk Iou Construction--structure--building Iou Human--person Iou Human--rider--bicyclist Iou Marking--crosswalk-zebra Iou Marking--general Iou Nature--sky Iou Nature--terrain Iou Nature--vegetation Iou Object--support--pole Iou Object--support--traffic-sign-frame Iou Object--traffic-light Iou Object--traffic-sign--front Iou Object--vehicle--bicycle Iou Object--vehicle--bus Iou Object--vehicle--car Iou Object--vehicle--truck Validation Loss Mean Accuracy Mean Iou Overall Accuracy
1.2232 0.4444 1000 0.5702 0.0 0.0076 0.1947 0.9719 0.0 0.7853 0.9291 0.0010 0.0 0.0 0.0565 0.9883 0.7214 0.9384 0.0000 0.0 0.0 0.0080 0.0 0.0 0.9465 0.0000 0.3826 0.0 0.0076 0.1690 0.8322 0.0 0.6317 0.8093 0.0010 0.0 0.0 0.0513 0.9556 0.5364 0.8328 0.0000 0.0 0.0 0.0080 0.0 0.0 0.7836 0.0000 1.2801 0.3095 0.2609 0.8827
1.1887 0.8889 2000 0.5990 0.6808 0.5331 0.5714 0.9134 0.0 0.9065 0.9353 0.7385 0.0 0.6071 0.5674 0.9882 0.7938 0.9389 0.4174 0.0 0.4767 0.7433 0.0 0.6268 0.9588 0.7212 0.4805 0.5040 0.4172 0.4380 0.8668 0.0 0.6597 0.8553 0.5604 0.0 0.4833 0.4250 0.9728 0.6336 0.8685 0.3218 0.0 0.3922 0.5945 0.0 0.5726 0.8500 0.5743 1.0995 0.5964 0.4987 0.9140
1.12 1.3333 3000 0.6494 0.6527 0.6627 0.6206 0.9596 0.0414 0.8344 0.9347 0.8106 0.0002 0.6065 0.6003 0.9890 0.7771 0.9443 0.4668 0.0002 0.6540 0.7695 0.0241 0.8612 0.9461 0.7723 0.5067 0.5496 0.4857 0.4887 0.8946 0.0409 0.7378 0.8653 0.5809 0.0002 0.4956 0.4698 0.9762 0.6538 0.8781 0.3705 0.0002 0.4815 0.6305 0.0241 0.7106 0.8770 0.6324 1.0300 0.6338 0.5370 0.9257
1.0221 1.7778 4000 0.6228 0.8566 0.6871 0.6574 0.9564 0.5549 0.8285 0.9382 0.8244 0.0000 0.7269 0.5655 0.9900 0.8062 0.9339 0.5275 0.3594 0.6964 0.7914 0.6096 0.8429 0.9542 0.7699 0.5058 0.5160 0.5043 0.4915 0.8995 0.3755 0.7321 0.8703 0.6045 0.0000 0.5934 0.4876 0.9777 0.6576 0.8812 0.3961 0.3432 0.5040 0.6565 0.4414 0.6979 0.8799 0.6538 1.0093 0.7174 0.5943 0.9286
1.0284 2.2222 5000 0.6842 0.7088 0.6491 0.6110 0.9499 0.3896 0.9066 0.9419 0.8207 0.3589 0.7697 0.6303 0.9876 0.8394 0.9360 0.5362 0.4824 0.7015 0.8113 0.7283 0.8290 0.9455 0.7542 0.5253 0.5870 0.5136 0.4817 0.9053 0.3123 0.7648 0.8702 0.6265 0.3358 0.6093 0.5193 0.9782 0.6693 0.8823 0.4089 0.4306 0.5184 0.6559 0.5020 0.7316 0.8863 0.6639 0.9947 0.7379 0.6252 0.9313
1.0125 2.6667 6000 0.6698 0.8612 0.6979 0.5951 0.9543 0.7659 0.8466 0.9480 0.8134 0.6030 0.7552 0.6331 0.9907 0.7757 0.9392 0.5164 0.5922 0.7079 0.7869 0.7361 0.8216 0.9564 0.7390 0.5314 0.5682 0.5170 0.5032 0.9060 0.4156 0.7689 0.8739 0.6418 0.4794 0.6298 0.5257 0.9786 0.6632 0.8837 0.4118 0.4875 0.5293 0.6700 0.5361 0.7336 0.8850 0.6647 0.9839 0.7698 0.6437 0.9330
1.0475 3.1111 7000 0.6851 0.8080 0.6232 0.6705 0.9491 0.5703 0.8856 0.9434 0.8270 0.6655 0.7459 0.6440 0.9900 0.8396 0.9418 0.5247 0.5958 0.7055 0.7797 0.7327 0.8714 0.9528 0.7800 0.5436 0.6190 0.5340 0.5274 0.9047 0.4117 0.7595 0.8768 0.6479 0.4965 0.6424 0.5233 0.9793 0.6715 0.8858 0.4194 0.4950 0.5389 0.6802 0.5389 0.7657 0.8908 0.6714 0.9755 0.7709 0.6532 0.9341
1.2139 3.5556 8000 0.6550 0.8046 0.6946 0.6737 0.9579 0.6496 0.8669 0.9432 0.8090 0.6377 0.7658 0.6484 0.9902 0.7722 0.9485 0.5491 0.6013 0.6810 0.7868 0.7504 0.8784 0.9529 0.7980 0.5439 0.6155 0.5385 0.5375 0.9114 0.4499 0.7722 0.8766 0.6564 0.5043 0.6365 0.5389 0.9797 0.6720 0.8879 0.4249 0.5045 0.5471 0.6883 0.5450 0.7749 0.8922 0.6816 0.9700 0.7746 0.6600 0.9361
0.9667 4.0 9000 0.6269 0.7822 0.6690 0.7303 0.9449 0.6441 0.9071 0.9422 0.8301 0.6951 0.7563 0.6526 0.9888 0.8000 0.9521 0.5469 0.5728 0.6941 0.7925 0.7470 0.8842 0.9616 0.8004 0.5315 0.6148 0.5304 0.5512 0.9059 0.4298 0.7538 0.8811 0.6575 0.5099 0.6570 0.5477 0.9798 0.6840 0.8885 0.4329 0.5032 0.5549 0.6858 0.5426 0.7918 0.8910 0.6854 0.9717 0.7792 0.6613 0.9356
0.9185 4.4444 10000 0.6886 0.7736 0.6861 0.6848 0.9642 0.6010 0.8124 0.9358 0.8273 0.6631 0.7653 0.6549 0.9889 0.8662 0.9455 0.5549 0.6414 0.7289 0.8127 0.7651 0.8360 0.9525 0.7956 0.5515 0.6024 0.5216 0.5326 0.9076 0.4402 0.7398 0.8806 0.6629 0.5227 0.6618 0.5553 0.9799 0.6831 0.8869 0.4373 0.5192 0.5496 0.6861 0.5643 0.7686 0.8936 0.6718 0.9696 0.7802 0.6617 0.9355
0.9251 4.8889 11000 0.7057 0.7517 0.7043 0.6223 0.9539 0.6552 0.8834 0.9429 0.8267 0.7147 0.8372 0.6626 0.9894 0.7855 0.9511 0.5368 0.6170 0.7379 0.7972 0.7274 0.8983 0.9570 0.8072 0.5431 0.6008 0.5544 0.5358 0.9137 0.4574 0.7904 0.8787 0.6589 0.5273 0.6437 0.5545 0.9802 0.6792 0.8900 0.4332 0.5236 0.5506 0.6992 0.5731 0.7735 0.8926 0.6796 0.9623 0.7855 0.6667 0.9375
0.9888 5.3333 12000 0.6904 0.7658 0.6800 0.7087 0.9531 0.4207 0.9055 0.9461 0.8465 0.6549 0.7846 0.6661 0.9901 0.8429 0.9417 0.5456 0.6098 0.7133 0.7911 0.7692 0.8669 0.9610 0.7646 0.5524 0.6182 0.5451 0.5508 0.9124 0.3442 0.7815 0.8830 0.6455 0.5194 0.6485 0.5570 0.9801 0.6864 0.8893 0.4357 0.5281 0.5588 0.6955 0.5617 0.7826 0.8926 0.6882 0.9605 0.7747 0.6633 0.9375
0.9546 5.7778 13000 0.6704 0.7887 0.7170 0.7026 0.9628 0.4858 0.8695 0.9423 0.8124 0.7615 0.7621 0.6666 0.9916 0.8676 0.9344 0.5581 0.6431 0.7165 0.8075 0.7896 0.9154 0.9551 0.8263 0.5433 0.6183 0.5450 0.5311 0.9132 0.3969 0.7741 0.8832 0.6712 0.5271 0.6757 0.5596 0.9801 0.6811 0.8886 0.4390 0.5401 0.5654 0.7025 0.5450 0.7482 0.8970 0.6980 0.9588 0.7890 0.6662 0.9375
0.9385 6.2222 14000 0.6859 0.7862 0.6720 0.6695 0.9601 0.6037 0.8797 0.9448 0.8479 0.7002 0.8024 0.6754 0.9889 0.8351 0.9472 0.5586 0.6714 0.7535 0.8095 0.7670 0.9010 0.9607 0.8368 0.5527 0.6162 0.5557 0.5480 0.9159 0.4532 0.7871 0.8851 0.6626 0.5317 0.6850 0.5667 0.9804 0.6934 0.8916 0.4434 0.5473 0.5574 0.7054 0.5678 0.7668 0.8971 0.6960 0.9513 0.7938 0.6742 0.9393
0.9649 6.6667 15000 0.6868 0.7777 0.7190 0.7330 0.9664 0.6360 0.8593 0.9432 0.8330 0.7332 0.8220 0.6249 0.9897 0.8720 0.9404 0.5629 0.6166 0.7347 0.8088 0.7473 0.8147 0.9568 0.8332 0.5564 0.6200 0.5713 0.5632 0.9161 0.4644 0.7815 0.8859 0.6710 0.5559 0.6696 0.5501 0.9806 0.6810 0.8908 0.4462 0.5236 0.5690 0.7051 0.5538 0.7603 0.8991 0.7125 0.9559 0.7918 0.6751 0.9392
0.9837 7.1111 16000 0.6970 0.8135 0.6830 0.6925 0.9508 0.5759 0.9156 0.9450 0.8385 0.7269 0.7993 0.6869 0.9875 0.8002 0.9509 0.5846 0.6613 0.7484 0.8044 0.7864 0.8693 0.9609 0.8070 0.5560 0.6131 0.5649 0.5464 0.9146 0.4438 0.7789 0.8850 0.6657 0.5365 0.6918 0.5729 0.9798 0.6902 0.8924 0.4488 0.5208 0.5689 0.7026 0.5609 0.7937 0.8993 0.7045 0.9550 0.7950 0.6753 0.9389
0.9885 7.5556 17000 0.7252 0.8036 0.6680 0.6714 0.9597 0.5902 0.8797 0.9472 0.8421 0.6778 0.8127 0.6709 0.9905 0.8355 0.9443 0.5382 0.7031 0.7404 0.8000 0.7346 0.8996 0.9620 0.8160 0.5601 0.6416 0.5558 0.5551 0.9155 0.4445 0.7852 0.8867 0.6692 0.5455 0.6706 0.5626 0.9808 0.6954 0.8930 0.4421 0.5448 0.5695 0.7092 0.5917 0.8030 0.9001 0.7195 0.9514 0.7919 0.6801 0.9399
0.9472 8.0 18000 0.7201 0.7481 0.6961 0.6713 0.9581 0.7132 0.8887 0.9477 0.8458 0.7235 0.7983 0.6833 0.9912 0.8176 0.9451 0.5440 0.6924 0.7267 0.8083 0.7538 0.8793 0.9614 0.8478 0.5686 0.6204 0.5513 0.5547 0.9178 0.4753 0.7893 0.8851 0.6653 0.5531 0.6900 0.5722 0.9807 0.6971 0.8937 0.4429 0.5504 0.5774 0.7131 0.5683 0.7907 0.9012 0.7287 0.9464 0.7983 0.6821 0.9405
1.0383 8.4444 19000 0.6841 0.8030 0.6607 0.7211 0.9608 0.6133 0.8750 0.9476 0.8187 0.7862 0.7857 0.7044 0.9904 0.7855 0.9469 0.5681 0.6974 0.7499 0.8211 0.7416 0.9011 0.9617 0.7960 0.5668 0.6247 0.5538 0.5585 0.9165 0.4327 0.7842 0.8875 0.6750 0.5290 0.6976 0.5747 0.9808 0.6858 0.8934 0.4497 0.5503 0.5707 0.7053 0.5493 0.7834 0.9005 0.7010 0.9520 0.7965 0.6770 0.9402
0.9236 8.8889 20000 0.7167 0.7557 0.6830 0.6632 0.9529 0.6264 0.9067 0.9491 0.8344 0.7219 0.8216 0.6903 0.9915 0.8470 0.9414 0.5647 0.6572 0.7443 0.8192 0.7185 0.9042 0.9572 0.8550 0.5760 0.6254 0.5504 0.5277 0.9154 0.4656 0.7797 0.8856 0.6756 0.5507 0.6972 0.5781 0.9809 0.6988 0.8934 0.4510 0.5599 0.5776 0.7189 0.5749 0.7896 0.9062 0.7376 0.9508 0.7966 0.6833 0.9401
0.9449 9.3333 21000 0.6725 0.7971 0.6865 0.7227 0.9620 0.5470 0.8828 0.9469 0.8447 0.7145 0.7529 0.6901 0.9904 0.8329 0.9436 0.5848 0.6544 0.7513 0.8164 0.7588 0.8998 0.9587 0.8154 0.5635 0.6228 0.5656 0.5530 0.9177 0.4237 0.7880 0.8874 0.6751 0.5370 0.6693 0.5631 0.9809 0.6869 0.8930 0.4575 0.5440 0.5806 0.7129 0.5681 0.7772 0.9014 0.7005 0.9518 0.7925 0.6769 0.9402
1.0282 9.7778 22000 0.7153 0.7991 0.6694 0.7252 0.9588 0.6269 0.9026 0.9493 0.8327 0.6922 0.8130 0.6820 0.9896 0.8370 0.9424 0.5814 0.6956 0.7443 0.8242 0.7874 0.8868 0.9597 0.8655 0.5787 0.6230 0.5442 0.5660 0.9197 0.4716 0.7932 0.8884 0.6794 0.5422 0.7089 0.5799 0.9809 0.6948 0.8937 0.4572 0.5618 0.5797 0.7185 0.5705 0.7931 0.9042 0.7298 0.9437 0.8035 0.6861 0.9415
0.9765 10.2222 23000 0.6973 0.7662 0.7285 0.7140 0.9569 0.7153 0.8956 0.9462 0.8375 0.7362 0.8066 0.7039 0.9911 0.8316 0.9443 0.5579 0.6472 0.7364 0.8269 0.7831 0.8961 0.9585 0.8547 0.5693 0.6107 0.5397 0.5661 0.9183 0.4959 0.7929 0.8888 0.6711 0.5112 0.7028 0.5814 0.9810 0.6986 0.8938 0.4502 0.5546 0.5844 0.7148 0.5392 0.7921 0.9046 0.7281 0.9486 0.8057 0.6822 0.9412
0.9217 10.6667 24000 0.7099 0.8119 0.6995 0.7175 0.9558 0.6655 0.8974 0.9473 0.8464 0.7354 0.8212 0.6935 0.9899 0.8197 0.9482 0.5786 0.6549 0.7626 0.8175 0.7396 0.8998 0.9538 0.8605 0.5764 0.6236 0.5480 0.5643 0.9178 0.4929 0.7869 0.8894 0.6780 0.5618 0.7014 0.5822 0.9811 0.6938 0.8947 0.4580 0.5510 0.5796 0.7129 0.5901 0.8015 0.9062 0.7248 0.9453 0.8055 0.6877 0.9413
0.9323 11.1111 25000 0.6859 0.7958 0.6713 0.6833 0.9660 0.5001 0.8722 0.9513 0.8517 0.7259 0.8034 0.6833 0.9899 0.8629 0.9440 0.5823 0.6580 0.7518 0.8151 0.7806 0.8573 0.9601 0.8014 0.5699 0.6324 0.5636 0.5513 0.9192 0.4098 0.7874 0.8881 0.6784 0.5608 0.7110 0.5797 0.9811 0.6961 0.8942 0.4607 0.5398 0.5843 0.7207 0.5785 0.7805 0.9006 0.7011 0.9506 0.7910 0.6821 0.9414
0.929 11.5556 26000 0.6956 0.8104 0.6802 0.7273 0.9547 0.6745 0.9086 0.9495 0.8465 0.7555 0.7899 0.6825 0.9898 0.8266 0.9445 0.5925 0.6659 0.7600 0.8262 0.7654 0.8893 0.9595 0.8236 0.5714 0.6223 0.5615 0.5525 0.9167 0.4970 0.7839 0.8894 0.6790 0.5851 0.6976 0.5759 0.9812 0.6937 0.8947 0.4602 0.5346 0.5815 0.7146 0.5840 0.7920 0.9037 0.7258 0.9525 0.8052 0.6869 0.9409
0.8921 12.0 27000 0.6719 0.8224 0.6834 0.7274 0.9639 0.5837 0.8808 0.9451 0.8577 0.6925 0.8134 0.6868 0.9903 0.8302 0.9503 0.5825 0.6433 0.7607 0.8280 0.7629 0.8677 0.9618 0.8272 0.5720 0.6331 0.5666 0.5600 0.9210 0.4573 0.7944 0.8900 0.6774 0.5534 0.7080 0.5820 0.9812 0.6917 0.8943 0.4581 0.5484 0.5837 0.7179 0.5890 0.7936 0.9036 0.7309 0.9438 0.7971 0.6873 0.9421
0.9551 12.4444 28000 0.7332 0.7665 0.7067 0.7068 0.9581 0.6366 0.8887 0.9475 0.8418 0.7535 0.8265 0.7210 0.9890 0.8284 0.9471 0.5917 0.6982 0.7549 0.8249 0.7723 0.8759 0.9596 0.8520 0.5727 0.6215 0.5521 0.5651 0.9198 0.4867 0.8036 0.8905 0.6794 0.5470 0.6854 0.5916 0.9811 0.7008 0.8955 0.4620 0.5434 0.5861 0.7145 0.5758 0.8071 0.9071 0.7292 0.9458 0.8079 0.6877 0.9420
0.8853 12.8889 29000 0.7067 0.7827 0.6972 0.7191 0.9596 0.6150 0.8954 0.9461 0.8428 0.7492 0.8193 0.6857 0.9897 0.8314 0.9486 0.5897 0.7024 0.7694 0.8239 0.7638 0.8787 0.9582 0.8555 0.5838 0.6320 0.5621 0.5740 0.9178 0.4580 0.7907 0.8909 0.6854 0.5749 0.7054 0.5832 0.9811 0.6979 0.8950 0.4631 0.5541 0.5799 0.7168 0.5798 0.7993 0.9070 0.7305 0.9464 0.8057 0.6897 0.9420
1.0445 13.3333 30000 0.6939 0.8091 0.6937 0.6978 0.9626 0.6119 0.8830 0.9513 0.8379 0.6934 0.8343 0.7040 0.9896 0.8217 0.9455 0.5910 0.7049 0.7586 0.8229 0.7597 0.8936 0.9607 0.8294 0.5777 0.6280 0.5516 0.5586 0.9208 0.4762 0.7940 0.8893 0.6850 0.5532 0.7093 0.5892 0.9812 0.6906 0.8951 0.4627 0.5545 0.5872 0.7234 0.5837 0.7906 0.9076 0.7394 0.9473 0.8022 0.6891 0.9422
0.946 13.7778 31000 0.6916 0.8010 0.6912 0.7125 0.9641 0.5945 0.8880 0.9499 0.8527 0.7083 0.8163 0.6996 0.9914 0.8220 0.9449 0.5781 0.6487 0.7520 0.8224 0.7735 0.8895 0.9617 0.8119 0.5815 0.6206 0.5618 0.5571 0.9218 0.4617 0.7986 0.8899 0.6784 0.5543 0.7120 0.5907 0.9813 0.6972 0.8955 0.4601 0.5516 0.5895 0.7197 0.5796 0.7783 0.9062 0.7193 0.9451 0.7985 0.6872 0.9426
0.9696 14.2222 32000 0.6905 0.7843 0.7100 0.6553 0.9608 0.6718 0.9059 0.9505 0.8451 0.7576 0.8399 0.6803 0.9898 0.7672 0.9526 0.5770 0.6876 0.7555 0.8224 0.7752 0.8676 0.9621 0.8332 0.5796 0.6307 0.5556 0.5338 0.9224 0.5101 0.8054 0.8884 0.6852 0.5862 0.7097 0.5871 0.9812 0.6704 0.8936 0.4614 0.5547 0.5850 0.7187 0.5806 0.8023 0.9059 0.7305 0.9502 0.8018 0.6904 0.9423
0.8856 14.6667 33000 0.7203 0.7959 0.6819 0.6989 0.9613 0.6177 0.8972 0.9426 0.8508 0.7254 0.8229 0.7096 0.9906 0.8196 0.9501 0.5966 0.6393 0.7720 0.8279 0.7610 0.8689 0.9598 0.8403 0.5813 0.6279 0.5540 0.5573 0.9220 0.4750 0.8023 0.8917 0.6840 0.5445 0.7191 0.5960 0.9813 0.6890 0.8947 0.4660 0.5240 0.5830 0.7174 0.5725 0.7942 0.9061 0.7282 0.9463 0.8022 0.6874 0.9426
0.9123 15.1111 34000 0.7244 0.7802 0.6843 0.6924 0.9604 0.5314 0.9040 0.9458 0.8365 0.7827 0.8232 0.7057 0.9898 0.8120 0.9508 0.5830 0.6900 0.7404 0.8258 0.7759 0.8790 0.9617 0.8280 0.5817 0.6259 0.5544 0.5495 0.9210 0.4291 0.8022 0.8912 0.6924 0.5925 0.7097 0.5922 0.9812 0.6887 0.8946 0.4650 0.5633 0.5945 0.7252 0.5687 0.7975 0.9058 0.7296 0.9481 0.8003 0.6894 0.9425
0.9586 15.5556 35000 0.7137 0.7836 0.6917 0.7091 0.9619 0.6224 0.8781 0.9486 0.8357 0.7273 0.8370 0.6981 0.9898 0.8432 0.9466 0.5884 0.6847 0.7565 0.8245 0.7786 0.8842 0.9611 0.8524 0.5882 0.6294 0.5518 0.5505 0.9204 0.4511 0.7939 0.8908 0.6890 0.5533 0.7182 0.5907 0.9814 0.6929 0.8953 0.4680 0.5768 0.5912 0.7226 0.5717 0.7944 0.9075 0.7366 0.9494 0.8051 0.6898 0.9424
0.9337 16.0 36000 0.7155 0.7862 0.6914 0.7178 0.9557 0.5895 0.9073 0.9460 0.8511 0.7229 0.8386 0.7159 0.9905 0.8339 0.9462 0.5888 0.6935 0.7591 0.8223 0.7813 0.8813 0.9630 0.8236 0.5925 0.6283 0.5521 0.5583 0.9194 0.4651 0.7933 0.8913 0.6831 0.5614 0.7088 0.5931 0.9813 0.6906 0.8948 0.4658 0.5669 0.5917 0.7203 0.5728 0.7947 0.9070 0.7252 0.9495 0.8053 0.6895 0.9422
0.9739 16.4444 37000 0.7139 0.7663 0.6945 0.6975 0.9611 0.5809 0.8826 0.9474 0.8453 0.7471 0.8455 0.7156 0.9902 0.8433 0.9473 0.5967 0.6439 0.7555 0.8226 0.7806 0.8873 0.9631 0.8268 0.5878 0.6361 0.5534 0.5557 0.9209 0.4557 0.7981 0.8918 0.6886 0.5691 0.7105 0.5932 0.9813 0.6899 0.8949 0.4672 0.5338 0.5970 0.7264 0.5797 0.8063 0.9066 0.7326 0.9489 0.8024 0.6903 0.9426
0.9184 16.8889 38000 0.6972 0.7814 0.6872 0.7017 0.9622 0.6181 0.8887 0.9467 0.8445 0.7520 0.8351 0.6967 0.9905 0.8006 0.9520 0.5775 0.6836 0.7536 0.8198 0.7777 0.8606 0.9603 0.8438 0.5810 0.6347 0.5504 0.5524 0.9210 0.4678 0.7927 0.8911 0.6882 0.5697 0.7208 0.5930 0.9814 0.6832 0.8948 0.4638 0.5662 0.5950 0.7199 0.5804 0.7956 0.9074 0.7288 0.9493 0.8014 0.6904 0.9425
0.8846 17.3333 39000 0.7089 0.7910 0.7070 0.7082 0.9598 0.6232 0.8892 0.9475 0.8555 0.7225 0.8497 0.7055 0.9903 0.8387 0.9466 0.5876 0.6796 0.7605 0.8270 0.7748 0.8921 0.9637 0.8201 0.5856 0.6362 0.5568 0.5551 0.9208 0.4680 0.7949 0.8915 0.6833 0.5643 0.7150 0.5958 0.9814 0.6920 0.8955 0.4683 0.5595 0.5946 0.7252 0.5839 0.8086 0.9059 0.7214 0.9489 0.8065 0.6915 0.9426
0.9373 17.7778 40000 0.9482 0.6922 0.8057 0.9429 0.6971 0.7852 0.6909 0.7067 0.9637 0.5863 0.8871 0.9477 0.8389 0.7507 0.8232 0.7083 0.9904 0.8428 0.9464 0.5965 0.6947 0.7636 0.8238 0.7786 0.9076 0.9597 0.8419 0.5824 0.6364 0.5599 0.5511 0.9219 0.4566 0.7969 0.8922 0.6904 0.5642 0.7268 0.5964 0.9814 0.6909 0.8948 0.4692 0.5720 0.5920 0.7254 0.5770 0.7995 0.9087 0.7337
0.894 18.2222 41000 0.9471 0.6933 0.8056 0.9432 0.7137 0.7797 0.7031 0.7001 0.9611 0.5874 0.8973 0.9473 0.8530 0.7323 0.8257 0.7197 0.9902 0.8290 0.9482 0.5972 0.6871 0.7597 0.8267 0.7673 0.8899 0.9604 0.8536 0.5840 0.6338 0.5571 0.5579 0.9222 0.4590 0.8020 0.8922 0.6843 0.5682 0.7181 0.5954 0.9814 0.6969 0.8960 0.4692 0.5645 0.5942 0.7280 0.5832 0.8114 0.9093 0.7372
0.8541 18.6667 42000 0.9476 0.6929 0.8047 0.9431 0.7240 0.7790 0.6978 0.6984 0.9619 0.5759 0.8922 0.9475 0.8447 0.7502 0.8324 0.7193 0.9900 0.8232 0.9486 0.5936 0.6959 0.7596 0.8295 0.7749 0.8816 0.9622 0.8249 0.5861 0.6352 0.5591 0.5595 0.9223 0.4537 0.7996 0.8925 0.6884 0.5759 0.7247 0.5987 0.9814 0.6911 0.8957 0.4690 0.5710 0.5938 0.7259 0.5772 0.8035 0.9074 0.7252
0.9359 19.1111 43000 0.9491 0.6924 0.8057 0.9430 0.7183 0.7779 0.7006 0.7076 0.9626 0.5701 0.8904 0.9480 0.8437 0.7625 0.8214 0.7181 0.9897 0.8361 0.9466 0.5981 0.6876 0.7613 0.8244 0.7775 0.8907 0.9623 0.8368 0.5867 0.6338 0.5611 0.5567 0.9225 0.4491 0.8018 0.8922 0.6906 0.5846 0.7215 0.5958 0.9814 0.6909 0.8955 0.4693 0.5668 0.5932 0.7219 0.5748 0.7984 0.9076 0.7299
0.9389 19.5556 44000 0.9478 0.6932 0.8066 0.9430 0.7033 0.7910 0.7026 0.7066 0.9625 0.6185 0.8918 0.9485 0.8492 0.7514 0.8247 0.7110 0.9905 0.8390 0.9457 0.5982 0.6959 0.7550 0.8254 0.7690 0.8872 0.9619 0.8225 0.5839 0.6314 0.5615 0.5556 0.9225 0.4665 0.8005 0.8925 0.6882 0.5862 0.7236 0.5963 0.9815 0.6892 0.8952 0.4693 0.5713 0.5943 0.7262 0.5817 0.7969 0.9075 0.7222
0.8656 20.0 45000 0.9471 0.6940 0.8072 0.9431 0.7139 0.7940 0.7037 0.7066 0.9635 0.6054 0.8864 0.9471 0.8464 0.7717 0.8305 0.7034 0.9905 0.8364 0.9463 0.5949 0.6872 0.7613 0.8302 0.7734 0.8816 0.9634 0.8290 0.5854 0.6329 0.5635 0.5578 0.9223 0.4671 0.7992 0.8928 0.6907 0.5950 0.7205 0.5949 0.9814 0.6899 0.8954 0.4690 0.5685 0.5949 0.7276 0.5790 0.8005 0.9072 0.7273

Framework versions

  • Transformers 4.48.3
  • Pytorch 2.1.2+cu121
  • Datasets 3.2.0
  • Tokenizers 0.21.0
Downloads last month
0
Safetensors
Model size
47.2M params
Tensor type
F32
·
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no pipeline_tag.

Model tree for Vrjb/SegFormer_b3_mappillary_

Finetuned
(3)
this model