SegFormer_b3_mappillary_
This model is a fine-tuned version of nvidia/segformer-b3-finetuned-cityscapes-1024-1024 on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.9471
- Mean Iou: 0.6940
- Mean Accuracy: 0.8072
- Overall Accuracy: 0.9431
- Accuracy Construction--barrier--fence: 0.7139
- Accuracy Construction--barrier--guard-rail: 0.7940
- Accuracy Construction--barrier--other-barrier: 0.7037
- Accuracy Construction--barrier--wall: 0.7066
- Accuracy Construction--flat--road: 0.9635
- Accuracy Construction--flat--service-lane: 0.6054
- Accuracy Construction--flat--sidewalk: 0.8864
- Accuracy Construction--structure--building: 0.9471
- Accuracy Human--person: 0.8464
- Accuracy Human--rider--bicyclist: 0.7717
- Accuracy Marking--crosswalk-zebra: 0.8305
- Accuracy Marking--general: 0.7034
- Accuracy Nature--sky: 0.9905
- Accuracy Nature--terrain: 0.8364
- Accuracy Nature--vegetation: 0.9463
- Accuracy Object--support--pole: 0.5949
- Accuracy Object--support--traffic-sign-frame: 0.6872
- Accuracy Object--traffic-light: 0.7613
- Accuracy Object--traffic-sign--front: 0.8302
- Accuracy Object--vehicle--bicycle: 0.7734
- Accuracy Object--vehicle--bus: 0.8816
- Accuracy Object--vehicle--car: 0.9634
- Accuracy Object--vehicle--truck: 0.8290
- Iou Construction--barrier--fence: 0.5854
- Iou Construction--barrier--guard-rail: 0.6329
- Iou Construction--barrier--other-barrier: 0.5635
- Iou Construction--barrier--wall: 0.5578
- Iou Construction--flat--road: 0.9223
- Iou Construction--flat--service-lane: 0.4671
- Iou Construction--flat--sidewalk: 0.7992
- Iou Construction--structure--building: 0.8928
- Iou Human--person: 0.6907
- Iou Human--rider--bicyclist: 0.5950
- Iou Marking--crosswalk-zebra: 0.7205
- Iou Marking--general: 0.5949
- Iou Nature--sky: 0.9814
- Iou Nature--terrain: 0.6899
- Iou Nature--vegetation: 0.8954
- Iou Object--support--pole: 0.4690
- Iou Object--support--traffic-sign-frame: 0.5685
- Iou Object--traffic-light: 0.5949
- Iou Object--traffic-sign--front: 0.7276
- Iou Object--vehicle--bicycle: 0.5790
- Iou Object--vehicle--bus: 0.8005
- Iou Object--vehicle--car: 0.9072
- Iou Object--vehicle--truck: 0.7273
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 6e-05
- train_batch_size: 2
- eval_batch_size: 2
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 20
- mixed_precision_training: Native AMP
Training results
Training Loss | Epoch | Step | Accuracy Construction--barrier--fence | Accuracy Construction--barrier--guard-rail | Accuracy Construction--barrier--other-barrier | Accuracy Construction--barrier--wall | Accuracy Construction--flat--road | Accuracy Construction--flat--service-lane | Accuracy Construction--flat--sidewalk | Accuracy Construction--structure--building | Accuracy Human--person | Accuracy Human--rider--bicyclist | Accuracy Marking--crosswalk-zebra | Accuracy Marking--general | Accuracy Nature--sky | Accuracy Nature--terrain | Accuracy Nature--vegetation | Accuracy Object--support--pole | Accuracy Object--support--traffic-sign-frame | Accuracy Object--traffic-light | Accuracy Object--traffic-sign--front | Accuracy Object--vehicle--bicycle | Accuracy Object--vehicle--bus | Accuracy Object--vehicle--car | Accuracy Object--vehicle--truck | Iou Construction--barrier--fence | Iou Construction--barrier--guard-rail | Iou Construction--barrier--other-barrier | Iou Construction--barrier--wall | Iou Construction--flat--road | Iou Construction--flat--service-lane | Iou Construction--flat--sidewalk | Iou Construction--structure--building | Iou Human--person | Iou Human--rider--bicyclist | Iou Marking--crosswalk-zebra | Iou Marking--general | Iou Nature--sky | Iou Nature--terrain | Iou Nature--vegetation | Iou Object--support--pole | Iou Object--support--traffic-sign-frame | Iou Object--traffic-light | Iou Object--traffic-sign--front | Iou Object--vehicle--bicycle | Iou Object--vehicle--bus | Iou Object--vehicle--car | Iou Object--vehicle--truck | Validation Loss | Mean Accuracy | Mean Iou | Overall Accuracy |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1.2232 | 0.4444 | 1000 | 0.5702 | 0.0 | 0.0076 | 0.1947 | 0.9719 | 0.0 | 0.7853 | 0.9291 | 0.0010 | 0.0 | 0.0 | 0.0565 | 0.9883 | 0.7214 | 0.9384 | 0.0000 | 0.0 | 0.0 | 0.0080 | 0.0 | 0.0 | 0.9465 | 0.0000 | 0.3826 | 0.0 | 0.0076 | 0.1690 | 0.8322 | 0.0 | 0.6317 | 0.8093 | 0.0010 | 0.0 | 0.0 | 0.0513 | 0.9556 | 0.5364 | 0.8328 | 0.0000 | 0.0 | 0.0 | 0.0080 | 0.0 | 0.0 | 0.7836 | 0.0000 | 1.2801 | 0.3095 | 0.2609 | 0.8827 |
1.1887 | 0.8889 | 2000 | 0.5990 | 0.6808 | 0.5331 | 0.5714 | 0.9134 | 0.0 | 0.9065 | 0.9353 | 0.7385 | 0.0 | 0.6071 | 0.5674 | 0.9882 | 0.7938 | 0.9389 | 0.4174 | 0.0 | 0.4767 | 0.7433 | 0.0 | 0.6268 | 0.9588 | 0.7212 | 0.4805 | 0.5040 | 0.4172 | 0.4380 | 0.8668 | 0.0 | 0.6597 | 0.8553 | 0.5604 | 0.0 | 0.4833 | 0.4250 | 0.9728 | 0.6336 | 0.8685 | 0.3218 | 0.0 | 0.3922 | 0.5945 | 0.0 | 0.5726 | 0.8500 | 0.5743 | 1.0995 | 0.5964 | 0.4987 | 0.9140 |
1.12 | 1.3333 | 3000 | 0.6494 | 0.6527 | 0.6627 | 0.6206 | 0.9596 | 0.0414 | 0.8344 | 0.9347 | 0.8106 | 0.0002 | 0.6065 | 0.6003 | 0.9890 | 0.7771 | 0.9443 | 0.4668 | 0.0002 | 0.6540 | 0.7695 | 0.0241 | 0.8612 | 0.9461 | 0.7723 | 0.5067 | 0.5496 | 0.4857 | 0.4887 | 0.8946 | 0.0409 | 0.7378 | 0.8653 | 0.5809 | 0.0002 | 0.4956 | 0.4698 | 0.9762 | 0.6538 | 0.8781 | 0.3705 | 0.0002 | 0.4815 | 0.6305 | 0.0241 | 0.7106 | 0.8770 | 0.6324 | 1.0300 | 0.6338 | 0.5370 | 0.9257 |
1.0221 | 1.7778 | 4000 | 0.6228 | 0.8566 | 0.6871 | 0.6574 | 0.9564 | 0.5549 | 0.8285 | 0.9382 | 0.8244 | 0.0000 | 0.7269 | 0.5655 | 0.9900 | 0.8062 | 0.9339 | 0.5275 | 0.3594 | 0.6964 | 0.7914 | 0.6096 | 0.8429 | 0.9542 | 0.7699 | 0.5058 | 0.5160 | 0.5043 | 0.4915 | 0.8995 | 0.3755 | 0.7321 | 0.8703 | 0.6045 | 0.0000 | 0.5934 | 0.4876 | 0.9777 | 0.6576 | 0.8812 | 0.3961 | 0.3432 | 0.5040 | 0.6565 | 0.4414 | 0.6979 | 0.8799 | 0.6538 | 1.0093 | 0.7174 | 0.5943 | 0.9286 |
1.0284 | 2.2222 | 5000 | 0.6842 | 0.7088 | 0.6491 | 0.6110 | 0.9499 | 0.3896 | 0.9066 | 0.9419 | 0.8207 | 0.3589 | 0.7697 | 0.6303 | 0.9876 | 0.8394 | 0.9360 | 0.5362 | 0.4824 | 0.7015 | 0.8113 | 0.7283 | 0.8290 | 0.9455 | 0.7542 | 0.5253 | 0.5870 | 0.5136 | 0.4817 | 0.9053 | 0.3123 | 0.7648 | 0.8702 | 0.6265 | 0.3358 | 0.6093 | 0.5193 | 0.9782 | 0.6693 | 0.8823 | 0.4089 | 0.4306 | 0.5184 | 0.6559 | 0.5020 | 0.7316 | 0.8863 | 0.6639 | 0.9947 | 0.7379 | 0.6252 | 0.9313 |
1.0125 | 2.6667 | 6000 | 0.6698 | 0.8612 | 0.6979 | 0.5951 | 0.9543 | 0.7659 | 0.8466 | 0.9480 | 0.8134 | 0.6030 | 0.7552 | 0.6331 | 0.9907 | 0.7757 | 0.9392 | 0.5164 | 0.5922 | 0.7079 | 0.7869 | 0.7361 | 0.8216 | 0.9564 | 0.7390 | 0.5314 | 0.5682 | 0.5170 | 0.5032 | 0.9060 | 0.4156 | 0.7689 | 0.8739 | 0.6418 | 0.4794 | 0.6298 | 0.5257 | 0.9786 | 0.6632 | 0.8837 | 0.4118 | 0.4875 | 0.5293 | 0.6700 | 0.5361 | 0.7336 | 0.8850 | 0.6647 | 0.9839 | 0.7698 | 0.6437 | 0.9330 |
1.0475 | 3.1111 | 7000 | 0.6851 | 0.8080 | 0.6232 | 0.6705 | 0.9491 | 0.5703 | 0.8856 | 0.9434 | 0.8270 | 0.6655 | 0.7459 | 0.6440 | 0.9900 | 0.8396 | 0.9418 | 0.5247 | 0.5958 | 0.7055 | 0.7797 | 0.7327 | 0.8714 | 0.9528 | 0.7800 | 0.5436 | 0.6190 | 0.5340 | 0.5274 | 0.9047 | 0.4117 | 0.7595 | 0.8768 | 0.6479 | 0.4965 | 0.6424 | 0.5233 | 0.9793 | 0.6715 | 0.8858 | 0.4194 | 0.4950 | 0.5389 | 0.6802 | 0.5389 | 0.7657 | 0.8908 | 0.6714 | 0.9755 | 0.7709 | 0.6532 | 0.9341 |
1.2139 | 3.5556 | 8000 | 0.6550 | 0.8046 | 0.6946 | 0.6737 | 0.9579 | 0.6496 | 0.8669 | 0.9432 | 0.8090 | 0.6377 | 0.7658 | 0.6484 | 0.9902 | 0.7722 | 0.9485 | 0.5491 | 0.6013 | 0.6810 | 0.7868 | 0.7504 | 0.8784 | 0.9529 | 0.7980 | 0.5439 | 0.6155 | 0.5385 | 0.5375 | 0.9114 | 0.4499 | 0.7722 | 0.8766 | 0.6564 | 0.5043 | 0.6365 | 0.5389 | 0.9797 | 0.6720 | 0.8879 | 0.4249 | 0.5045 | 0.5471 | 0.6883 | 0.5450 | 0.7749 | 0.8922 | 0.6816 | 0.9700 | 0.7746 | 0.6600 | 0.9361 |
0.9667 | 4.0 | 9000 | 0.6269 | 0.7822 | 0.6690 | 0.7303 | 0.9449 | 0.6441 | 0.9071 | 0.9422 | 0.8301 | 0.6951 | 0.7563 | 0.6526 | 0.9888 | 0.8000 | 0.9521 | 0.5469 | 0.5728 | 0.6941 | 0.7925 | 0.7470 | 0.8842 | 0.9616 | 0.8004 | 0.5315 | 0.6148 | 0.5304 | 0.5512 | 0.9059 | 0.4298 | 0.7538 | 0.8811 | 0.6575 | 0.5099 | 0.6570 | 0.5477 | 0.9798 | 0.6840 | 0.8885 | 0.4329 | 0.5032 | 0.5549 | 0.6858 | 0.5426 | 0.7918 | 0.8910 | 0.6854 | 0.9717 | 0.7792 | 0.6613 | 0.9356 |
0.9185 | 4.4444 | 10000 | 0.6886 | 0.7736 | 0.6861 | 0.6848 | 0.9642 | 0.6010 | 0.8124 | 0.9358 | 0.8273 | 0.6631 | 0.7653 | 0.6549 | 0.9889 | 0.8662 | 0.9455 | 0.5549 | 0.6414 | 0.7289 | 0.8127 | 0.7651 | 0.8360 | 0.9525 | 0.7956 | 0.5515 | 0.6024 | 0.5216 | 0.5326 | 0.9076 | 0.4402 | 0.7398 | 0.8806 | 0.6629 | 0.5227 | 0.6618 | 0.5553 | 0.9799 | 0.6831 | 0.8869 | 0.4373 | 0.5192 | 0.5496 | 0.6861 | 0.5643 | 0.7686 | 0.8936 | 0.6718 | 0.9696 | 0.7802 | 0.6617 | 0.9355 |
0.9251 | 4.8889 | 11000 | 0.7057 | 0.7517 | 0.7043 | 0.6223 | 0.9539 | 0.6552 | 0.8834 | 0.9429 | 0.8267 | 0.7147 | 0.8372 | 0.6626 | 0.9894 | 0.7855 | 0.9511 | 0.5368 | 0.6170 | 0.7379 | 0.7972 | 0.7274 | 0.8983 | 0.9570 | 0.8072 | 0.5431 | 0.6008 | 0.5544 | 0.5358 | 0.9137 | 0.4574 | 0.7904 | 0.8787 | 0.6589 | 0.5273 | 0.6437 | 0.5545 | 0.9802 | 0.6792 | 0.8900 | 0.4332 | 0.5236 | 0.5506 | 0.6992 | 0.5731 | 0.7735 | 0.8926 | 0.6796 | 0.9623 | 0.7855 | 0.6667 | 0.9375 |
0.9888 | 5.3333 | 12000 | 0.6904 | 0.7658 | 0.6800 | 0.7087 | 0.9531 | 0.4207 | 0.9055 | 0.9461 | 0.8465 | 0.6549 | 0.7846 | 0.6661 | 0.9901 | 0.8429 | 0.9417 | 0.5456 | 0.6098 | 0.7133 | 0.7911 | 0.7692 | 0.8669 | 0.9610 | 0.7646 | 0.5524 | 0.6182 | 0.5451 | 0.5508 | 0.9124 | 0.3442 | 0.7815 | 0.8830 | 0.6455 | 0.5194 | 0.6485 | 0.5570 | 0.9801 | 0.6864 | 0.8893 | 0.4357 | 0.5281 | 0.5588 | 0.6955 | 0.5617 | 0.7826 | 0.8926 | 0.6882 | 0.9605 | 0.7747 | 0.6633 | 0.9375 |
0.9546 | 5.7778 | 13000 | 0.6704 | 0.7887 | 0.7170 | 0.7026 | 0.9628 | 0.4858 | 0.8695 | 0.9423 | 0.8124 | 0.7615 | 0.7621 | 0.6666 | 0.9916 | 0.8676 | 0.9344 | 0.5581 | 0.6431 | 0.7165 | 0.8075 | 0.7896 | 0.9154 | 0.9551 | 0.8263 | 0.5433 | 0.6183 | 0.5450 | 0.5311 | 0.9132 | 0.3969 | 0.7741 | 0.8832 | 0.6712 | 0.5271 | 0.6757 | 0.5596 | 0.9801 | 0.6811 | 0.8886 | 0.4390 | 0.5401 | 0.5654 | 0.7025 | 0.5450 | 0.7482 | 0.8970 | 0.6980 | 0.9588 | 0.7890 | 0.6662 | 0.9375 |
0.9385 | 6.2222 | 14000 | 0.6859 | 0.7862 | 0.6720 | 0.6695 | 0.9601 | 0.6037 | 0.8797 | 0.9448 | 0.8479 | 0.7002 | 0.8024 | 0.6754 | 0.9889 | 0.8351 | 0.9472 | 0.5586 | 0.6714 | 0.7535 | 0.8095 | 0.7670 | 0.9010 | 0.9607 | 0.8368 | 0.5527 | 0.6162 | 0.5557 | 0.5480 | 0.9159 | 0.4532 | 0.7871 | 0.8851 | 0.6626 | 0.5317 | 0.6850 | 0.5667 | 0.9804 | 0.6934 | 0.8916 | 0.4434 | 0.5473 | 0.5574 | 0.7054 | 0.5678 | 0.7668 | 0.8971 | 0.6960 | 0.9513 | 0.7938 | 0.6742 | 0.9393 |
0.9649 | 6.6667 | 15000 | 0.6868 | 0.7777 | 0.7190 | 0.7330 | 0.9664 | 0.6360 | 0.8593 | 0.9432 | 0.8330 | 0.7332 | 0.8220 | 0.6249 | 0.9897 | 0.8720 | 0.9404 | 0.5629 | 0.6166 | 0.7347 | 0.8088 | 0.7473 | 0.8147 | 0.9568 | 0.8332 | 0.5564 | 0.6200 | 0.5713 | 0.5632 | 0.9161 | 0.4644 | 0.7815 | 0.8859 | 0.6710 | 0.5559 | 0.6696 | 0.5501 | 0.9806 | 0.6810 | 0.8908 | 0.4462 | 0.5236 | 0.5690 | 0.7051 | 0.5538 | 0.7603 | 0.8991 | 0.7125 | 0.9559 | 0.7918 | 0.6751 | 0.9392 |
0.9837 | 7.1111 | 16000 | 0.6970 | 0.8135 | 0.6830 | 0.6925 | 0.9508 | 0.5759 | 0.9156 | 0.9450 | 0.8385 | 0.7269 | 0.7993 | 0.6869 | 0.9875 | 0.8002 | 0.9509 | 0.5846 | 0.6613 | 0.7484 | 0.8044 | 0.7864 | 0.8693 | 0.9609 | 0.8070 | 0.5560 | 0.6131 | 0.5649 | 0.5464 | 0.9146 | 0.4438 | 0.7789 | 0.8850 | 0.6657 | 0.5365 | 0.6918 | 0.5729 | 0.9798 | 0.6902 | 0.8924 | 0.4488 | 0.5208 | 0.5689 | 0.7026 | 0.5609 | 0.7937 | 0.8993 | 0.7045 | 0.9550 | 0.7950 | 0.6753 | 0.9389 |
0.9885 | 7.5556 | 17000 | 0.7252 | 0.8036 | 0.6680 | 0.6714 | 0.9597 | 0.5902 | 0.8797 | 0.9472 | 0.8421 | 0.6778 | 0.8127 | 0.6709 | 0.9905 | 0.8355 | 0.9443 | 0.5382 | 0.7031 | 0.7404 | 0.8000 | 0.7346 | 0.8996 | 0.9620 | 0.8160 | 0.5601 | 0.6416 | 0.5558 | 0.5551 | 0.9155 | 0.4445 | 0.7852 | 0.8867 | 0.6692 | 0.5455 | 0.6706 | 0.5626 | 0.9808 | 0.6954 | 0.8930 | 0.4421 | 0.5448 | 0.5695 | 0.7092 | 0.5917 | 0.8030 | 0.9001 | 0.7195 | 0.9514 | 0.7919 | 0.6801 | 0.9399 |
0.9472 | 8.0 | 18000 | 0.7201 | 0.7481 | 0.6961 | 0.6713 | 0.9581 | 0.7132 | 0.8887 | 0.9477 | 0.8458 | 0.7235 | 0.7983 | 0.6833 | 0.9912 | 0.8176 | 0.9451 | 0.5440 | 0.6924 | 0.7267 | 0.8083 | 0.7538 | 0.8793 | 0.9614 | 0.8478 | 0.5686 | 0.6204 | 0.5513 | 0.5547 | 0.9178 | 0.4753 | 0.7893 | 0.8851 | 0.6653 | 0.5531 | 0.6900 | 0.5722 | 0.9807 | 0.6971 | 0.8937 | 0.4429 | 0.5504 | 0.5774 | 0.7131 | 0.5683 | 0.7907 | 0.9012 | 0.7287 | 0.9464 | 0.7983 | 0.6821 | 0.9405 |
1.0383 | 8.4444 | 19000 | 0.6841 | 0.8030 | 0.6607 | 0.7211 | 0.9608 | 0.6133 | 0.8750 | 0.9476 | 0.8187 | 0.7862 | 0.7857 | 0.7044 | 0.9904 | 0.7855 | 0.9469 | 0.5681 | 0.6974 | 0.7499 | 0.8211 | 0.7416 | 0.9011 | 0.9617 | 0.7960 | 0.5668 | 0.6247 | 0.5538 | 0.5585 | 0.9165 | 0.4327 | 0.7842 | 0.8875 | 0.6750 | 0.5290 | 0.6976 | 0.5747 | 0.9808 | 0.6858 | 0.8934 | 0.4497 | 0.5503 | 0.5707 | 0.7053 | 0.5493 | 0.7834 | 0.9005 | 0.7010 | 0.9520 | 0.7965 | 0.6770 | 0.9402 |
0.9236 | 8.8889 | 20000 | 0.7167 | 0.7557 | 0.6830 | 0.6632 | 0.9529 | 0.6264 | 0.9067 | 0.9491 | 0.8344 | 0.7219 | 0.8216 | 0.6903 | 0.9915 | 0.8470 | 0.9414 | 0.5647 | 0.6572 | 0.7443 | 0.8192 | 0.7185 | 0.9042 | 0.9572 | 0.8550 | 0.5760 | 0.6254 | 0.5504 | 0.5277 | 0.9154 | 0.4656 | 0.7797 | 0.8856 | 0.6756 | 0.5507 | 0.6972 | 0.5781 | 0.9809 | 0.6988 | 0.8934 | 0.4510 | 0.5599 | 0.5776 | 0.7189 | 0.5749 | 0.7896 | 0.9062 | 0.7376 | 0.9508 | 0.7966 | 0.6833 | 0.9401 |
0.9449 | 9.3333 | 21000 | 0.6725 | 0.7971 | 0.6865 | 0.7227 | 0.9620 | 0.5470 | 0.8828 | 0.9469 | 0.8447 | 0.7145 | 0.7529 | 0.6901 | 0.9904 | 0.8329 | 0.9436 | 0.5848 | 0.6544 | 0.7513 | 0.8164 | 0.7588 | 0.8998 | 0.9587 | 0.8154 | 0.5635 | 0.6228 | 0.5656 | 0.5530 | 0.9177 | 0.4237 | 0.7880 | 0.8874 | 0.6751 | 0.5370 | 0.6693 | 0.5631 | 0.9809 | 0.6869 | 0.8930 | 0.4575 | 0.5440 | 0.5806 | 0.7129 | 0.5681 | 0.7772 | 0.9014 | 0.7005 | 0.9518 | 0.7925 | 0.6769 | 0.9402 |
1.0282 | 9.7778 | 22000 | 0.7153 | 0.7991 | 0.6694 | 0.7252 | 0.9588 | 0.6269 | 0.9026 | 0.9493 | 0.8327 | 0.6922 | 0.8130 | 0.6820 | 0.9896 | 0.8370 | 0.9424 | 0.5814 | 0.6956 | 0.7443 | 0.8242 | 0.7874 | 0.8868 | 0.9597 | 0.8655 | 0.5787 | 0.6230 | 0.5442 | 0.5660 | 0.9197 | 0.4716 | 0.7932 | 0.8884 | 0.6794 | 0.5422 | 0.7089 | 0.5799 | 0.9809 | 0.6948 | 0.8937 | 0.4572 | 0.5618 | 0.5797 | 0.7185 | 0.5705 | 0.7931 | 0.9042 | 0.7298 | 0.9437 | 0.8035 | 0.6861 | 0.9415 |
0.9765 | 10.2222 | 23000 | 0.6973 | 0.7662 | 0.7285 | 0.7140 | 0.9569 | 0.7153 | 0.8956 | 0.9462 | 0.8375 | 0.7362 | 0.8066 | 0.7039 | 0.9911 | 0.8316 | 0.9443 | 0.5579 | 0.6472 | 0.7364 | 0.8269 | 0.7831 | 0.8961 | 0.9585 | 0.8547 | 0.5693 | 0.6107 | 0.5397 | 0.5661 | 0.9183 | 0.4959 | 0.7929 | 0.8888 | 0.6711 | 0.5112 | 0.7028 | 0.5814 | 0.9810 | 0.6986 | 0.8938 | 0.4502 | 0.5546 | 0.5844 | 0.7148 | 0.5392 | 0.7921 | 0.9046 | 0.7281 | 0.9486 | 0.8057 | 0.6822 | 0.9412 |
0.9217 | 10.6667 | 24000 | 0.7099 | 0.8119 | 0.6995 | 0.7175 | 0.9558 | 0.6655 | 0.8974 | 0.9473 | 0.8464 | 0.7354 | 0.8212 | 0.6935 | 0.9899 | 0.8197 | 0.9482 | 0.5786 | 0.6549 | 0.7626 | 0.8175 | 0.7396 | 0.8998 | 0.9538 | 0.8605 | 0.5764 | 0.6236 | 0.5480 | 0.5643 | 0.9178 | 0.4929 | 0.7869 | 0.8894 | 0.6780 | 0.5618 | 0.7014 | 0.5822 | 0.9811 | 0.6938 | 0.8947 | 0.4580 | 0.5510 | 0.5796 | 0.7129 | 0.5901 | 0.8015 | 0.9062 | 0.7248 | 0.9453 | 0.8055 | 0.6877 | 0.9413 |
0.9323 | 11.1111 | 25000 | 0.6859 | 0.7958 | 0.6713 | 0.6833 | 0.9660 | 0.5001 | 0.8722 | 0.9513 | 0.8517 | 0.7259 | 0.8034 | 0.6833 | 0.9899 | 0.8629 | 0.9440 | 0.5823 | 0.6580 | 0.7518 | 0.8151 | 0.7806 | 0.8573 | 0.9601 | 0.8014 | 0.5699 | 0.6324 | 0.5636 | 0.5513 | 0.9192 | 0.4098 | 0.7874 | 0.8881 | 0.6784 | 0.5608 | 0.7110 | 0.5797 | 0.9811 | 0.6961 | 0.8942 | 0.4607 | 0.5398 | 0.5843 | 0.7207 | 0.5785 | 0.7805 | 0.9006 | 0.7011 | 0.9506 | 0.7910 | 0.6821 | 0.9414 |
0.929 | 11.5556 | 26000 | 0.6956 | 0.8104 | 0.6802 | 0.7273 | 0.9547 | 0.6745 | 0.9086 | 0.9495 | 0.8465 | 0.7555 | 0.7899 | 0.6825 | 0.9898 | 0.8266 | 0.9445 | 0.5925 | 0.6659 | 0.7600 | 0.8262 | 0.7654 | 0.8893 | 0.9595 | 0.8236 | 0.5714 | 0.6223 | 0.5615 | 0.5525 | 0.9167 | 0.4970 | 0.7839 | 0.8894 | 0.6790 | 0.5851 | 0.6976 | 0.5759 | 0.9812 | 0.6937 | 0.8947 | 0.4602 | 0.5346 | 0.5815 | 0.7146 | 0.5840 | 0.7920 | 0.9037 | 0.7258 | 0.9525 | 0.8052 | 0.6869 | 0.9409 |
0.8921 | 12.0 | 27000 | 0.6719 | 0.8224 | 0.6834 | 0.7274 | 0.9639 | 0.5837 | 0.8808 | 0.9451 | 0.8577 | 0.6925 | 0.8134 | 0.6868 | 0.9903 | 0.8302 | 0.9503 | 0.5825 | 0.6433 | 0.7607 | 0.8280 | 0.7629 | 0.8677 | 0.9618 | 0.8272 | 0.5720 | 0.6331 | 0.5666 | 0.5600 | 0.9210 | 0.4573 | 0.7944 | 0.8900 | 0.6774 | 0.5534 | 0.7080 | 0.5820 | 0.9812 | 0.6917 | 0.8943 | 0.4581 | 0.5484 | 0.5837 | 0.7179 | 0.5890 | 0.7936 | 0.9036 | 0.7309 | 0.9438 | 0.7971 | 0.6873 | 0.9421 |
0.9551 | 12.4444 | 28000 | 0.7332 | 0.7665 | 0.7067 | 0.7068 | 0.9581 | 0.6366 | 0.8887 | 0.9475 | 0.8418 | 0.7535 | 0.8265 | 0.7210 | 0.9890 | 0.8284 | 0.9471 | 0.5917 | 0.6982 | 0.7549 | 0.8249 | 0.7723 | 0.8759 | 0.9596 | 0.8520 | 0.5727 | 0.6215 | 0.5521 | 0.5651 | 0.9198 | 0.4867 | 0.8036 | 0.8905 | 0.6794 | 0.5470 | 0.6854 | 0.5916 | 0.9811 | 0.7008 | 0.8955 | 0.4620 | 0.5434 | 0.5861 | 0.7145 | 0.5758 | 0.8071 | 0.9071 | 0.7292 | 0.9458 | 0.8079 | 0.6877 | 0.9420 |
0.8853 | 12.8889 | 29000 | 0.7067 | 0.7827 | 0.6972 | 0.7191 | 0.9596 | 0.6150 | 0.8954 | 0.9461 | 0.8428 | 0.7492 | 0.8193 | 0.6857 | 0.9897 | 0.8314 | 0.9486 | 0.5897 | 0.7024 | 0.7694 | 0.8239 | 0.7638 | 0.8787 | 0.9582 | 0.8555 | 0.5838 | 0.6320 | 0.5621 | 0.5740 | 0.9178 | 0.4580 | 0.7907 | 0.8909 | 0.6854 | 0.5749 | 0.7054 | 0.5832 | 0.9811 | 0.6979 | 0.8950 | 0.4631 | 0.5541 | 0.5799 | 0.7168 | 0.5798 | 0.7993 | 0.9070 | 0.7305 | 0.9464 | 0.8057 | 0.6897 | 0.9420 |
1.0445 | 13.3333 | 30000 | 0.6939 | 0.8091 | 0.6937 | 0.6978 | 0.9626 | 0.6119 | 0.8830 | 0.9513 | 0.8379 | 0.6934 | 0.8343 | 0.7040 | 0.9896 | 0.8217 | 0.9455 | 0.5910 | 0.7049 | 0.7586 | 0.8229 | 0.7597 | 0.8936 | 0.9607 | 0.8294 | 0.5777 | 0.6280 | 0.5516 | 0.5586 | 0.9208 | 0.4762 | 0.7940 | 0.8893 | 0.6850 | 0.5532 | 0.7093 | 0.5892 | 0.9812 | 0.6906 | 0.8951 | 0.4627 | 0.5545 | 0.5872 | 0.7234 | 0.5837 | 0.7906 | 0.9076 | 0.7394 | 0.9473 | 0.8022 | 0.6891 | 0.9422 |
0.946 | 13.7778 | 31000 | 0.6916 | 0.8010 | 0.6912 | 0.7125 | 0.9641 | 0.5945 | 0.8880 | 0.9499 | 0.8527 | 0.7083 | 0.8163 | 0.6996 | 0.9914 | 0.8220 | 0.9449 | 0.5781 | 0.6487 | 0.7520 | 0.8224 | 0.7735 | 0.8895 | 0.9617 | 0.8119 | 0.5815 | 0.6206 | 0.5618 | 0.5571 | 0.9218 | 0.4617 | 0.7986 | 0.8899 | 0.6784 | 0.5543 | 0.7120 | 0.5907 | 0.9813 | 0.6972 | 0.8955 | 0.4601 | 0.5516 | 0.5895 | 0.7197 | 0.5796 | 0.7783 | 0.9062 | 0.7193 | 0.9451 | 0.7985 | 0.6872 | 0.9426 |
0.9696 | 14.2222 | 32000 | 0.6905 | 0.7843 | 0.7100 | 0.6553 | 0.9608 | 0.6718 | 0.9059 | 0.9505 | 0.8451 | 0.7576 | 0.8399 | 0.6803 | 0.9898 | 0.7672 | 0.9526 | 0.5770 | 0.6876 | 0.7555 | 0.8224 | 0.7752 | 0.8676 | 0.9621 | 0.8332 | 0.5796 | 0.6307 | 0.5556 | 0.5338 | 0.9224 | 0.5101 | 0.8054 | 0.8884 | 0.6852 | 0.5862 | 0.7097 | 0.5871 | 0.9812 | 0.6704 | 0.8936 | 0.4614 | 0.5547 | 0.5850 | 0.7187 | 0.5806 | 0.8023 | 0.9059 | 0.7305 | 0.9502 | 0.8018 | 0.6904 | 0.9423 |
0.8856 | 14.6667 | 33000 | 0.7203 | 0.7959 | 0.6819 | 0.6989 | 0.9613 | 0.6177 | 0.8972 | 0.9426 | 0.8508 | 0.7254 | 0.8229 | 0.7096 | 0.9906 | 0.8196 | 0.9501 | 0.5966 | 0.6393 | 0.7720 | 0.8279 | 0.7610 | 0.8689 | 0.9598 | 0.8403 | 0.5813 | 0.6279 | 0.5540 | 0.5573 | 0.9220 | 0.4750 | 0.8023 | 0.8917 | 0.6840 | 0.5445 | 0.7191 | 0.5960 | 0.9813 | 0.6890 | 0.8947 | 0.4660 | 0.5240 | 0.5830 | 0.7174 | 0.5725 | 0.7942 | 0.9061 | 0.7282 | 0.9463 | 0.8022 | 0.6874 | 0.9426 |
0.9123 | 15.1111 | 34000 | 0.7244 | 0.7802 | 0.6843 | 0.6924 | 0.9604 | 0.5314 | 0.9040 | 0.9458 | 0.8365 | 0.7827 | 0.8232 | 0.7057 | 0.9898 | 0.8120 | 0.9508 | 0.5830 | 0.6900 | 0.7404 | 0.8258 | 0.7759 | 0.8790 | 0.9617 | 0.8280 | 0.5817 | 0.6259 | 0.5544 | 0.5495 | 0.9210 | 0.4291 | 0.8022 | 0.8912 | 0.6924 | 0.5925 | 0.7097 | 0.5922 | 0.9812 | 0.6887 | 0.8946 | 0.4650 | 0.5633 | 0.5945 | 0.7252 | 0.5687 | 0.7975 | 0.9058 | 0.7296 | 0.9481 | 0.8003 | 0.6894 | 0.9425 |
0.9586 | 15.5556 | 35000 | 0.7137 | 0.7836 | 0.6917 | 0.7091 | 0.9619 | 0.6224 | 0.8781 | 0.9486 | 0.8357 | 0.7273 | 0.8370 | 0.6981 | 0.9898 | 0.8432 | 0.9466 | 0.5884 | 0.6847 | 0.7565 | 0.8245 | 0.7786 | 0.8842 | 0.9611 | 0.8524 | 0.5882 | 0.6294 | 0.5518 | 0.5505 | 0.9204 | 0.4511 | 0.7939 | 0.8908 | 0.6890 | 0.5533 | 0.7182 | 0.5907 | 0.9814 | 0.6929 | 0.8953 | 0.4680 | 0.5768 | 0.5912 | 0.7226 | 0.5717 | 0.7944 | 0.9075 | 0.7366 | 0.9494 | 0.8051 | 0.6898 | 0.9424 |
0.9337 | 16.0 | 36000 | 0.7155 | 0.7862 | 0.6914 | 0.7178 | 0.9557 | 0.5895 | 0.9073 | 0.9460 | 0.8511 | 0.7229 | 0.8386 | 0.7159 | 0.9905 | 0.8339 | 0.9462 | 0.5888 | 0.6935 | 0.7591 | 0.8223 | 0.7813 | 0.8813 | 0.9630 | 0.8236 | 0.5925 | 0.6283 | 0.5521 | 0.5583 | 0.9194 | 0.4651 | 0.7933 | 0.8913 | 0.6831 | 0.5614 | 0.7088 | 0.5931 | 0.9813 | 0.6906 | 0.8948 | 0.4658 | 0.5669 | 0.5917 | 0.7203 | 0.5728 | 0.7947 | 0.9070 | 0.7252 | 0.9495 | 0.8053 | 0.6895 | 0.9422 |
0.9739 | 16.4444 | 37000 | 0.7139 | 0.7663 | 0.6945 | 0.6975 | 0.9611 | 0.5809 | 0.8826 | 0.9474 | 0.8453 | 0.7471 | 0.8455 | 0.7156 | 0.9902 | 0.8433 | 0.9473 | 0.5967 | 0.6439 | 0.7555 | 0.8226 | 0.7806 | 0.8873 | 0.9631 | 0.8268 | 0.5878 | 0.6361 | 0.5534 | 0.5557 | 0.9209 | 0.4557 | 0.7981 | 0.8918 | 0.6886 | 0.5691 | 0.7105 | 0.5932 | 0.9813 | 0.6899 | 0.8949 | 0.4672 | 0.5338 | 0.5970 | 0.7264 | 0.5797 | 0.8063 | 0.9066 | 0.7326 | 0.9489 | 0.8024 | 0.6903 | 0.9426 |
0.9184 | 16.8889 | 38000 | 0.6972 | 0.7814 | 0.6872 | 0.7017 | 0.9622 | 0.6181 | 0.8887 | 0.9467 | 0.8445 | 0.7520 | 0.8351 | 0.6967 | 0.9905 | 0.8006 | 0.9520 | 0.5775 | 0.6836 | 0.7536 | 0.8198 | 0.7777 | 0.8606 | 0.9603 | 0.8438 | 0.5810 | 0.6347 | 0.5504 | 0.5524 | 0.9210 | 0.4678 | 0.7927 | 0.8911 | 0.6882 | 0.5697 | 0.7208 | 0.5930 | 0.9814 | 0.6832 | 0.8948 | 0.4638 | 0.5662 | 0.5950 | 0.7199 | 0.5804 | 0.7956 | 0.9074 | 0.7288 | 0.9493 | 0.8014 | 0.6904 | 0.9425 |
0.8846 | 17.3333 | 39000 | 0.7089 | 0.7910 | 0.7070 | 0.7082 | 0.9598 | 0.6232 | 0.8892 | 0.9475 | 0.8555 | 0.7225 | 0.8497 | 0.7055 | 0.9903 | 0.8387 | 0.9466 | 0.5876 | 0.6796 | 0.7605 | 0.8270 | 0.7748 | 0.8921 | 0.9637 | 0.8201 | 0.5856 | 0.6362 | 0.5568 | 0.5551 | 0.9208 | 0.4680 | 0.7949 | 0.8915 | 0.6833 | 0.5643 | 0.7150 | 0.5958 | 0.9814 | 0.6920 | 0.8955 | 0.4683 | 0.5595 | 0.5946 | 0.7252 | 0.5839 | 0.8086 | 0.9059 | 0.7214 | 0.9489 | 0.8065 | 0.6915 | 0.9426 |
0.9373 | 17.7778 | 40000 | 0.9482 | 0.6922 | 0.8057 | 0.9429 | 0.6971 | 0.7852 | 0.6909 | 0.7067 | 0.9637 | 0.5863 | 0.8871 | 0.9477 | 0.8389 | 0.7507 | 0.8232 | 0.7083 | 0.9904 | 0.8428 | 0.9464 | 0.5965 | 0.6947 | 0.7636 | 0.8238 | 0.7786 | 0.9076 | 0.9597 | 0.8419 | 0.5824 | 0.6364 | 0.5599 | 0.5511 | 0.9219 | 0.4566 | 0.7969 | 0.8922 | 0.6904 | 0.5642 | 0.7268 | 0.5964 | 0.9814 | 0.6909 | 0.8948 | 0.4692 | 0.5720 | 0.5920 | 0.7254 | 0.5770 | 0.7995 | 0.9087 | 0.7337 |
0.894 | 18.2222 | 41000 | 0.9471 | 0.6933 | 0.8056 | 0.9432 | 0.7137 | 0.7797 | 0.7031 | 0.7001 | 0.9611 | 0.5874 | 0.8973 | 0.9473 | 0.8530 | 0.7323 | 0.8257 | 0.7197 | 0.9902 | 0.8290 | 0.9482 | 0.5972 | 0.6871 | 0.7597 | 0.8267 | 0.7673 | 0.8899 | 0.9604 | 0.8536 | 0.5840 | 0.6338 | 0.5571 | 0.5579 | 0.9222 | 0.4590 | 0.8020 | 0.8922 | 0.6843 | 0.5682 | 0.7181 | 0.5954 | 0.9814 | 0.6969 | 0.8960 | 0.4692 | 0.5645 | 0.5942 | 0.7280 | 0.5832 | 0.8114 | 0.9093 | 0.7372 |
0.8541 | 18.6667 | 42000 | 0.9476 | 0.6929 | 0.8047 | 0.9431 | 0.7240 | 0.7790 | 0.6978 | 0.6984 | 0.9619 | 0.5759 | 0.8922 | 0.9475 | 0.8447 | 0.7502 | 0.8324 | 0.7193 | 0.9900 | 0.8232 | 0.9486 | 0.5936 | 0.6959 | 0.7596 | 0.8295 | 0.7749 | 0.8816 | 0.9622 | 0.8249 | 0.5861 | 0.6352 | 0.5591 | 0.5595 | 0.9223 | 0.4537 | 0.7996 | 0.8925 | 0.6884 | 0.5759 | 0.7247 | 0.5987 | 0.9814 | 0.6911 | 0.8957 | 0.4690 | 0.5710 | 0.5938 | 0.7259 | 0.5772 | 0.8035 | 0.9074 | 0.7252 |
0.9359 | 19.1111 | 43000 | 0.9491 | 0.6924 | 0.8057 | 0.9430 | 0.7183 | 0.7779 | 0.7006 | 0.7076 | 0.9626 | 0.5701 | 0.8904 | 0.9480 | 0.8437 | 0.7625 | 0.8214 | 0.7181 | 0.9897 | 0.8361 | 0.9466 | 0.5981 | 0.6876 | 0.7613 | 0.8244 | 0.7775 | 0.8907 | 0.9623 | 0.8368 | 0.5867 | 0.6338 | 0.5611 | 0.5567 | 0.9225 | 0.4491 | 0.8018 | 0.8922 | 0.6906 | 0.5846 | 0.7215 | 0.5958 | 0.9814 | 0.6909 | 0.8955 | 0.4693 | 0.5668 | 0.5932 | 0.7219 | 0.5748 | 0.7984 | 0.9076 | 0.7299 |
0.9389 | 19.5556 | 44000 | 0.9478 | 0.6932 | 0.8066 | 0.9430 | 0.7033 | 0.7910 | 0.7026 | 0.7066 | 0.9625 | 0.6185 | 0.8918 | 0.9485 | 0.8492 | 0.7514 | 0.8247 | 0.7110 | 0.9905 | 0.8390 | 0.9457 | 0.5982 | 0.6959 | 0.7550 | 0.8254 | 0.7690 | 0.8872 | 0.9619 | 0.8225 | 0.5839 | 0.6314 | 0.5615 | 0.5556 | 0.9225 | 0.4665 | 0.8005 | 0.8925 | 0.6882 | 0.5862 | 0.7236 | 0.5963 | 0.9815 | 0.6892 | 0.8952 | 0.4693 | 0.5713 | 0.5943 | 0.7262 | 0.5817 | 0.7969 | 0.9075 | 0.7222 |
0.8656 | 20.0 | 45000 | 0.9471 | 0.6940 | 0.8072 | 0.9431 | 0.7139 | 0.7940 | 0.7037 | 0.7066 | 0.9635 | 0.6054 | 0.8864 | 0.9471 | 0.8464 | 0.7717 | 0.8305 | 0.7034 | 0.9905 | 0.8364 | 0.9463 | 0.5949 | 0.6872 | 0.7613 | 0.8302 | 0.7734 | 0.8816 | 0.9634 | 0.8290 | 0.5854 | 0.6329 | 0.5635 | 0.5578 | 0.9223 | 0.4671 | 0.7992 | 0.8928 | 0.6907 | 0.5950 | 0.7205 | 0.5949 | 0.9814 | 0.6899 | 0.8954 | 0.4690 | 0.5685 | 0.5949 | 0.7276 | 0.5790 | 0.8005 | 0.9072 | 0.7273 |
Framework versions
- Transformers 4.48.3
- Pytorch 2.1.2+cu121
- Datasets 3.2.0
- Tokenizers 0.21.0
- Downloads last month
- 0
Inference Providers
NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API:
The model has no pipeline_tag.