|
--- |
|
license: mit |
|
base_model: microsoft/deberta-v3-large |
|
tags: |
|
- generated_from_trainer |
|
metrics: |
|
- accuracy |
|
model-index: |
|
- name: checkpoints_28_9_microsoft_deberta_V2 |
|
results: [] |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
# checkpoints_28_9_microsoft_deberta_V2 |
|
|
|
This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the None dataset. |
|
It achieves the following results on the evaluation set: |
|
- Loss: 0.5675 |
|
- Map@3: 0.8842 |
|
- Accuracy: 0.815 |
|
|
|
## Model description |
|
|
|
More information needed |
|
|
|
## Intended uses & limitations |
|
|
|
More information needed |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- learning_rate: 2e-05 |
|
- train_batch_size: 2 |
|
- eval_batch_size: 4 |
|
- seed: 42 |
|
- gradient_accumulation_steps: 32 |
|
- total_train_batch_size: 64 |
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
- lr_scheduler_type: cosine |
|
- lr_scheduler_warmup_ratio: 0.1 |
|
- num_epochs: 1 |
|
|
|
### Training results |
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Map@3 | Accuracy | |
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:--------:| |
|
| 1.0011 | 0.11 | 100 | 0.8842 | 0.8258 | 0.74 | |
|
| 0.8398 | 0.21 | 200 | 0.6978 | 0.8667 | 0.79 | |
|
| 0.8414 | 0.32 | 300 | 0.6337 | 0.8625 | 0.795 | |
|
| 0.7461 | 0.43 | 400 | 0.6609 | 0.8600 | 0.775 | |
|
| 0.7131 | 0.53 | 500 | 0.6329 | 0.8758 | 0.805 | |
|
| 0.6891 | 0.64 | 600 | 0.6157 | 0.8892 | 0.83 | |
|
| 0.6969 | 0.75 | 700 | 0.5917 | 0.8808 | 0.805 | |
|
| 0.6775 | 0.85 | 800 | 0.5698 | 0.8817 | 0.81 | |
|
| 0.6534 | 0.96 | 900 | 0.5675 | 0.8842 | 0.815 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.32.1 |
|
- Pytorch 2.0.0 |
|
- Datasets 2.9.0 |
|
- Tokenizers 0.13.3 |
|
|