Edit model card

checkpoints_30_9_microsoft_deberta_V1.0_384

This model is a fine-tuned version of VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.5746
  • Map@3: 0.7625
  • Accuracy: 0.655

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-07
  • train_batch_size: 2
  • eval_batch_size: 4
  • seed: 42
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • training_steps: 1200

Training results

Training Loss Epoch Step Validation Loss Map@3 Accuracy
1.6081 0.05 100 1.6083 0.7092 0.585
1.6107 0.11 200 1.6078 0.7375 0.625
1.6077 0.16 300 1.6070 0.7517 0.65
1.6097 0.21 400 1.6055 0.7542 0.645
1.6083 0.27 500 1.6030 0.7650 0.65
1.6006 0.32 600 1.5989 0.7733 0.665
1.5932 0.37 700 1.5927 0.7742 0.66
1.5881 0.43 800 1.5858 0.7742 0.665
1.578 0.48 900 1.5800 0.7708 0.66
1.5717 0.53 1000 1.5763 0.7658 0.655
1.5677 0.59 1100 1.5748 0.7625 0.655
1.5666 0.64 1200 1.5746 0.7625 0.655

Framework versions

  • Transformers 4.32.1
  • Pytorch 2.0.0
  • Datasets 2.9.0
  • Tokenizers 0.13.3
Downloads last month
2
Inference API
Inference API (serverless) does not yet support transformers models for this pipeline type.

Model tree for VuongQuoc/checkpoints_30_9_microsoft_deberta_V1.0_384

Unable to build the model tree, the base model loops to the model itself. Learn more.