Lucain Pouget's picture

Lucain Pouget PRO

Wauplin

AI & ML interests

None yet

Recent Activity

Organizations

Hugging Face's profile picture Competitions's profile picture Hugging Face Internal Testing Organization's profile picture Templates's profile picture Hugging Test Lab's profile picture Gradio-Themes-Party's profile picture Evaluation on the Hub's profile picture HuggingFaceM4's profile picture Hugging Face H4's profile picture Hugging Face OSS Metrics's profile picture Stable Diffusion concepts library's profile picture HuggingFace Doc Builds's profile picture accelerate's profile picture Hugging Face Smol Cluster's profile picture Open LLM Leaderboard's profile picture private beta for deeplinks's profile picture Hugging Face Discord Community's profile picture LLHF's profile picture SLLHF's profile picture Mt Metrics's profile picture DDUF's profile picture

Wauplin's activity

reacted to not-lain's post with ๐Ÿ”ฅ 3 days ago
view post
Post
2337
ever wondered how you can make an API call to a visual-question-answering model without sending an image url ๐Ÿ‘€

you can do that by converting your local image to base64 and sending it to the API.

recently I made some changes to my library "loadimg" that allows you to make converting images to base64 a breeze.
๐Ÿ”— https://github.com/not-lain/loadimg

API request example ๐Ÿ› ๏ธ:
from loadimg import load_img
from huggingface_hub import InferenceClient

# or load a local image
my_b64_img = load_img(imgPath_url_pillow_or_numpy ,output_type="base64" ) 

client = InferenceClient(api_key="hf_xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx")

messages = [
	{
		"role": "user",
		"content": [
			{
				"type": "text",
				"text": "Describe this image in one sentence."
			},
			{
				"type": "image_url",
				"image_url": {
					"url": my_b64_img # base64 allows using images without uploading them to the web
				}
			}
		]
	}
]

stream = client.chat.completions.create(
    model="meta-llama/Llama-3.2-11B-Vision-Instruct", 
	messages=messages, 
	max_tokens=500,
	stream=True
)

for chunk in stream:
    print(chunk.choices[0].delta.content, end="")
replied to jsulz's post 21 days ago
view reply

Let's go! ๐Ÿ”ฅ๐Ÿ”ฅ๐Ÿ”ฅ

reacted to jsulz's post with ๐Ÿš€๐Ÿ”ฅโค๏ธ 21 days ago
view post
Post
3409
Time flies!

Six months after joining Hugging Face the Xet team is kicking off the first migrations from LFS to our storage for a number of repositories on the Hub.

More on the nitty gritty details behind the migration soon, but here are the big takeaways:

๐Ÿค– We've successfully completed the first migrations from LFS -> Xet to test the infrastructure and prepare for a wider release

โœ… No action on your part needed - you can work with a Xet-backed repo like any other repo on the Hub (for now - major improvements on their way!)

๐Ÿ‘€ Keep an eye out for the Xet logo to see if a repo you know is on our infra! See the screenshots below to spot the difference ๐Ÿ‘‡

โฉ โฉ โฉ Blazing uploads and downloads coming soon. Wโ€™re gearing up for a full integration with the Hub's Python library that will make building on the Hub faster than ever - special thanks to @celinah and @Wauplin for their assistance.

๐ŸŽ‰ Want Early Access? If youโ€™re curious and want to test it out the bleeding edge that will power the development experience on the Hub, weโ€™d love to partner with you. Let me know!

This is the culmination of a lot of effort from the entire team. Big round of applause to @sirahd @brianronan @jgodlewski @hoytak @seanses @assafvayner @znation @saba9 @rajatarya @port8080 @yuchenglow
  • 1 reply
ยท
reacted to julien-c's post with โค๏ธ๐Ÿค—๐Ÿ”ฅ 3 months ago
view post
Post
10349
After some heated discussion ๐Ÿ”ฅ, we clarify our intent re. storage limits on the Hub

TL;DR:
- public storage is free, and (unless blatant abuse) unlimited. We do ask that you consider upgrading to PRO and/or Enterprise Hub if possible
- private storage is paid above a significant free tier (1TB if you have a paid account, 100GB otherwise)

docs: https://huggingface.co/docs/hub/storage-limits

We optimize our infrastructure continuously to scale our storage for the coming years of growth in Machine learning, to the benefit of the community ๐Ÿ”ฅ

cc: @reach-vb @pierric @victor and the HF team
ยท
reacted to fdaudens's post with ๐Ÿš€๐Ÿ”ฅ๐Ÿค—โค๏ธ 3 months ago
view post
Post
1798
Keeping up with open-source AI in 2024 = overwhelming.

Here's help: We're launching our Year in Review on what actually matters, starting today!

Fresh content dropping daily until year end. Come along for the ride - first piece out now with @clem 's predictions for 2025.

Think of it as your end-of-year AI chocolate calendar.

Kudos to @BrigitteTousi @clefourrier @Wauplin @thomwolf for making it happen. We teamed up with aiworld.eu for awesome visualizations to make this digestibleโ€”it's a charm to work with their team.

Check it out: huggingface/open-source-ai-year-in-review-2024
reacted to clem's post with ๐Ÿš€๐Ÿ”ฅ 5 months ago
view post
Post
4472
This is no Woodstock AI but will be fun nonetheless haha. Iโ€™ll be hosting a live workshop with team members next week about the Enterprise Hugging Face hub.

1,000 spots available first-come first serve with some surprises during the stream!

You can register and add to your calendar here: https://streamyard.com/watch/JS2jHsUP3NDM
ยท
posted an update 5 months ago
view post
Post
3074
What a great milestone to celebrate! The huggingface_hub library is slowly becoming a cornerstone of the Python ML ecosystem when it comes to interacting with the @huggingface Hub. It wouldn't be there without the hundreds of community contributions and feedback! No matter if you are loading a model, sharing a dataset, running remote inference or starting jobs on our infra, you are for sure using it! And this is only the beginning so give a star if you wanna follow the project ๐Ÿ‘‰ https://github.com/huggingface/huggingface_hub
  • 1 reply
ยท
posted an update 6 months ago
view post
Post
4680
๐Ÿš€ Exciting News! ๐Ÿš€

We've just released ๐š‘๐šž๐š๐š๐š’๐š—๐š๐š๐šŠ๐šŒ๐šŽ_๐š‘๐šž๐š‹ v0.25.0 and it's packed with powerful new features and improvements!

โœจ ๐—ง๐—ผ๐—ฝ ๐—›๐—ถ๐—ด๐—ต๐—น๐—ถ๐—ด๐—ต๐˜๐˜€:

โ€ข ๐Ÿ“ ๐—จ๐—ฝ๐—น๐—ผ๐—ฎ๐—ฑ ๐—น๐—ฎ๐—ฟ๐—ด๐—ฒ ๐—ณ๐—ผ๐—น๐—ฑ๐—ฒ๐—ฟ๐˜€ with ease using huggingface-cli upload-large-folder. Designed for your massive models and datasets. Much recommended if you struggle to upload your Llama 70B fine-tuned model ๐Ÿคก
โ€ข ๐Ÿ”Ž ๐—ฆ๐—ฒ๐—ฎ๐—ฟ๐—ฐ๐—ต ๐—”๐—ฃ๐—œ: new search filters (gated status, inference status) and fetch trending score.
โ€ข โšก๐—œ๐—ป๐—ณ๐—ฒ๐—ฟ๐—ฒ๐—ป๐—ฐ๐—ฒ๐—–๐—น๐—ถ๐—ฒ๐—ป๐˜: major improvements simplifying chat completions and handling async tasks better.

Weโ€™ve also introduced tons of bug fixes and quality-of-life improvements - thanks to the awesome contributions from our community! ๐Ÿ’ช

๐Ÿ’ก Check out the release notes: Wauplin/huggingface_hub#8

Want to try it out? Install the release with:

pip install huggingface_hub==0.25.0

  • 1 reply
ยท
replied to clem's post 7 months ago
view reply

Thanks for the ping @clem !

This documentation is more recent regarding HfApi (the Python client). You have methods like model_info and list_models to get details about models (and similarly with datasets and Spaces). In addition to the package reference, we also have a small guide on how to use it.

Otherwise, if you are interested in the HTTP endpoint to build your requests yourself, here is the API reference.

replied to their post 8 months ago
replied to their post 8 months ago
view reply

Are you referring to Agents in transformers? If yes, here is the docs about it: https://huggingface.co/docs/transformers/agents. Regarding tools, TGI supports them and the InferenceClient from huggingface_hub as well, meaning you can pass tools to chat_completion (see "Example using tools:" section in https://huggingface.co/docs/huggingface_hub/v0.24.0/en/package_reference/inference_client#huggingface_hub.InferenceClient.chat_completion). These tools parameters were already available on huggingface_hub 0.23.x.

Hope this answers your question :)

posted an update 8 months ago
view post
Post
2018
๐Ÿš€ Just released version 0.24.0 of the ๐š‘๐šž๐š๐š๐š’๐š—๐š๐š๐šŠ๐šŒ๐šŽ_๐š‘๐šž๐š‹ Python library!

Exciting updates include:
โšก InferenceClient is now a drop-in replacement for OpenAI's chat completion!

โœจ Support for response_format, adapter_id , truncate, and more in InferenceClient

๐Ÿ’พ Serialization module with a save_torch_model helper that handles shared layers, sharding, naming convention, and safe serialization. Basically a condensed version of logic scattered across safetensors, transformers , accelerate

๐Ÿ“ Optimized HfFileSystem to avoid getting rate limited when browsing HuggingFaceFW/fineweb

๐Ÿ”จ HfApi & CLI improvements: prevent empty commits, create repo inside resource group, webhooks API, more options in the Search API, etc.

Check out the full release notes for more details:
Wauplin/huggingface_hub#7
๐Ÿ‘€
ยท