Aymeric Roucher's picture

Aymeric Roucher

m-ric

AI & ML interests

Leading Agents at Hugging Face 🤗

Recent Activity

liked a Space 3 days ago
data-agents/jupyter-agent
updated a Space 3 days ago
m-ric/ai-travel-planner
View all activity

Articles

Organizations

Hugging Face's profile picture Atmos Bank's profile picture Hugging Test Lab's profile picture Tools's profile picture HuggingFaceM4's profile picture lecocqassociate's profile picture huggingPartyParis's profile picture Supreme's profile picture Propulse Lab's profile picture FactSet's profile picture Leaderboard Organization's profile picture FactSet's profile picture CGIAR's profile picture Aperture Laboratories's profile picture AI Energy Score Project's profile picture C&A's profile picture Social Post Explorers's profile picture Dev Mode Explorers's profile picture Agent Collab's profile picture SLLHF's profile picture Data Agents's profile picture Hugging Face Party @ PyTorch Conference's profile picture Nerdy Face's profile picture Hugging Face Science's profile picture Agents Leaderboard's profile picture

Posts 80

view post
Post
1375
After 6 years, BERT, the workhorse of encoder models, finally gets a replacement: 𝗪𝗲𝗹𝗰𝗼𝗺𝗲 𝗠𝗼𝗱𝗲𝗿𝗻𝗕𝗘𝗥𝗧! 🤗

We talk a lot about ✨Generative AI✨, meaning "Decoder version of the Transformers architecture", but this is only one of the ways to build LLMs: encoder models, that turn a sentence in a vector, are maybe even more widely used in industry than generative models.

The workhorse for this category has been BERT since its release in 2018 (that's prehistory for LLMs).

It's not a fancy 100B parameters supermodel (just a few hundred millions), but it's an excellent workhorse, kind of a Honda Civic for LLMs.

Many applications use BERT-family models - the top models in this category cumulate millions of downloads on the Hub.

➡️ Now a collaboration between Answer.AI and LightOn just introduced BERT's replacement: ModernBERT.

𝗧𝗟;𝗗𝗥:
🏛️ Architecture changes:
⇒ First, standard modernizations:
- Rotary positional embeddings (RoPE)
- Replace GeLU with GeGLU,
- Use Flash Attention 2
✨ The team also introduced innovative techniques like alternating attention instead of full attention, and sequence packing to get rid of padding overhead.

🥇 As a result, the model tops the game of encoder models:
It beats previous standard DeBERTaV3 for 1/5th the memory footprint, and runs 4x faster!

Read the blog post 👉 https://huggingface.co/blog/modernbert
view post
Post
1829
𝐇𝐮𝐠𝐠𝐢𝐧𝐠 𝐅𝐚𝐜𝐞 𝐫𝐞𝐥𝐞𝐚𝐬𝐞𝐬 𝐏𝐢𝐜𝐨𝐭𝐫𝐨𝐧, 𝐚 𝐦𝐢𝐜𝐫𝐨𝐬𝐜𝐨𝐩𝐢𝐜 𝐥𝐢𝐛 𝐭𝐡𝐚𝐭 𝐬𝐨𝐥𝐯𝐞𝐬 𝐋𝐋𝐌 𝐭𝐫𝐚𝐢𝐧𝐢𝐧𝐠 𝟒𝐃 𝐩𝐚𝐫𝐚𝐥𝐥𝐞𝐥𝐢𝐳𝐚𝐭𝐢𝐨𝐧 🥳

🕰️ Llama-3.1-405B took 39 million GPU-hours to train, i.e. about 4.5 thousand years.

👴🏻 If they had needed all this time, we would have GPU stories from the time of Pharaoh 𓂀: "Alas, Lord of Two Lands, the shipment of counting-stones arriving from Cathay was lost to pirates, this shall delay the building of your computing temple by many moons "

🛠️ But instead, they just parallelized the training on 24k H100s, which made it take just a few months.
This required parallelizing across 4 dimensions: data, tensor, context, pipeline.
And it is infamously hard to do, making for bloated code repos that hold together only by magic.

🤏 𝗕𝘂𝘁 𝗻𝗼𝘄 𝘄𝗲 𝗱𝗼𝗻'𝘁 𝗻𝗲𝗲𝗱 𝗵𝘂𝗴𝗲 𝗿𝗲𝗽𝗼𝘀 𝗮𝗻𝘆𝗺𝗼𝗿𝗲! Instead of building mega-training codes, Hugging Face colleagues cooked in the other direction, towards tiny 4D parallelism libs. A team has built Nanotron, already widely used in industry.
And now a team releases Picotron, a radical approach to code 4D Parallelism in just a few hundred lines of code, a real engineering prowess, making it much easier to understand what's actually happening!

⚡ 𝗜𝘁'𝘀 𝘁𝗶𝗻𝘆, 𝘆𝗲𝘁 𝗽𝗼𝘄𝗲𝗿𝗳𝘂𝗹:
Counting in MFU (Model FLOPs Utilization, how much the model actually uses all the compute potential), this lib reaches ~50% on SmolLM-1.7B model with 8 H100 GPUs, which is really close to what huge libs would reach. (Caution: the team is leading further benchmarks to verify this)

Go take a look 👉 https://github.com/huggingface/picotron/tree/main/picotron