Less is More for Reasoning (LIMO): a 32B model fine-tuned with 817 examples can beat o1-preview on math reasoning! ๐คฏ
Do we really need o1's huge RL procedure to see reasoning emerge? It seems not. Researchers from Shanghai Jiaotong University just demonstrated that carefully selected examples can boost math performance in large language models using SFT โno huge datasets or RL procedures needed.
Their procedure allows Qwen2.5-32B-Instruct to jump from 6.5% to 57% on AIME and from 59% to 95% on MATH, while using only 1% of the data in previous approaches.
โก The Less-is-More Reasoning Hypothesis: โฃ Minimal but precise examples that showcase optimal reasoning patterns matter more than sheer quantity โฃ Pre-training knowledge plus sufficient computational resources at inference levels up math skills
โก๏ธ Core techniques: โฃ High-quality reasoning chains with self-verification steps โฃ 817 handpicked problems that encourage deeper reasoning โฃ Enough inference-time computation to allow extended reasoning
๐ช Efficiency gains: โฃ Only 817 examples instead of 100k+ โฃ 40.5% absolute improvement across 10 diverse benchmarks, outperforming models trained on 100x more data
This really challenges the notion that SFT leads to memorization rather than generalization! And opens up reasoning to GPU-poor researchers ๐
๐๐ฟ๐ฒ๐ฎ๐ ๐ณ๐ฒ๐ฎ๐๐๐ฟ๐ฒ ๐ฎ๐น๐ฒ๐ฟ๐: you can now share agents to the Hub! ๐ฅณ๐ฅณ
And any agent pushed to Hub get a cool Space interface to directly chat with it.
This was a real technical challenge: for instance, serializing tools to export them meant that you needed to get all the source code for a tool, verify that it was standalone (not relying on external variables), and gathering all the packages required to make it run.