|
import torch |
|
import argparse |
|
|
|
from nerf.provider import NeRFDataset |
|
from nerf.utils import * |
|
|
|
import gradio as gr |
|
import gc |
|
|
|
print(f'[INFO] loading options..') |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
parser.add_argument('--text', default=None, help="text prompt") |
|
|
|
|
|
parser.add_argument('--test', action='store_true', help="test mode") |
|
parser.add_argument('--save_mesh', action='store_true', help="export an obj mesh with texture") |
|
parser.add_argument('--eval_interval', type=int, default=10, help="evaluate on the valid set every interval epochs") |
|
parser.add_argument('--workspace', type=str, default='trial_gradio') |
|
parser.add_argument('--guidance', type=str, default='stable-diffusion', help='choose from [stable-diffusion, clip]') |
|
parser.add_argument('--seed', type=int, default=0) |
|
|
|
|
|
parser.add_argument('--iters', type=int, default=10000, help="training iters") |
|
parser.add_argument('--lr', type=float, default=1e-3, help="initial learning rate") |
|
parser.add_argument('--ckpt', type=str, default='latest') |
|
parser.add_argument('--cuda_ray', action='store_true', help="use CUDA raymarching instead of pytorch") |
|
parser.add_argument('--max_steps', type=int, default=1024, help="max num steps sampled per ray (only valid when using --cuda_ray)") |
|
parser.add_argument('--num_steps', type=int, default=64, help="num steps sampled per ray (only valid when not using --cuda_ray)") |
|
parser.add_argument('--upsample_steps', type=int, default=64, help="num steps up-sampled per ray (only valid when not using --cuda_ray)") |
|
parser.add_argument('--update_extra_interval', type=int, default=16, help="iter interval to update extra status (only valid when using --cuda_ray)") |
|
parser.add_argument('--max_ray_batch', type=int, default=4096, help="batch size of rays at inference to avoid OOM (only valid when not using --cuda_ray)") |
|
parser.add_argument('--albedo_iters', type=int, default=1000, help="training iters that only use albedo shading") |
|
|
|
parser.add_argument('--bg_radius', type=float, default=1.4, help="if positive, use a background model at sphere(bg_radius)") |
|
parser.add_argument('--density_thresh', type=float, default=10, help="threshold for density grid to be occupied") |
|
|
|
parser.add_argument('--fp16', action='store_true', help="use amp mixed precision training") |
|
parser.add_argument('--backbone', type=str, default='grid', help="nerf backbone, choose from [grid, tcnn, vanilla]") |
|
|
|
parser.add_argument('--w', type=int, default=64, help="render width for NeRF in training") |
|
parser.add_argument('--h', type=int, default=64, help="render height for NeRF in training") |
|
parser.add_argument('--jitter_pose', action='store_true', help="add jitters to the randomly sampled camera poses") |
|
|
|
|
|
parser.add_argument('--bound', type=float, default=1, help="assume the scene is bounded in box(-bound, bound)") |
|
parser.add_argument('--dt_gamma', type=float, default=0, help="dt_gamma (>=0) for adaptive ray marching. set to 0 to disable, >0 to accelerate rendering (but usually with worse quality)") |
|
parser.add_argument('--min_near', type=float, default=0.1, help="minimum near distance for camera") |
|
parser.add_argument('--radius_range', type=float, nargs='*', default=[1.0, 1.5], help="training camera radius range") |
|
parser.add_argument('--fovy_range', type=float, nargs='*', default=[40, 70], help="training camera fovy range") |
|
parser.add_argument('--dir_text', action='store_true', help="direction-encode the text prompt, by appending front/side/back/overhead view") |
|
parser.add_argument('--angle_overhead', type=float, default=30, help="[0, angle_overhead] is the overhead region") |
|
parser.add_argument('--angle_front', type=float, default=60, help="[0, angle_front] is the front region, [180, 180+angle_front] the back region, otherwise the side region.") |
|
|
|
parser.add_argument('--lambda_entropy', type=float, default=1e-4, help="loss scale for alpha entropy") |
|
parser.add_argument('--lambda_opacity', type=float, default=0, help="loss scale for alpha value") |
|
parser.add_argument('--lambda_orient', type=float, default=1e-2, help="loss scale for orientation") |
|
|
|
|
|
parser.add_argument('--gui', action='store_true', help="start a GUI") |
|
parser.add_argument('--W', type=int, default=800, help="GUI width") |
|
parser.add_argument('--H', type=int, default=800, help="GUI height") |
|
parser.add_argument('--radius', type=float, default=3, help="default GUI camera radius from center") |
|
parser.add_argument('--fovy', type=float, default=60, help="default GUI camera fovy") |
|
parser.add_argument('--light_theta', type=float, default=60, help="default GUI light direction in [0, 180], corresponding to elevation [90, -90]") |
|
parser.add_argument('--light_phi', type=float, default=0, help="default GUI light direction in [0, 360), azimuth") |
|
parser.add_argument('--max_spp', type=int, default=1, help="GUI rendering max sample per pixel") |
|
|
|
opt = parser.parse_args() |
|
|
|
|
|
opt.fp16 = True |
|
opt.dir_text = True |
|
opt.cuda_ray = True |
|
|
|
|
|
|
|
if opt.backbone == 'vanilla': |
|
from nerf.network import NeRFNetwork |
|
elif opt.backbone == 'tcnn': |
|
from nerf.network_tcnn import NeRFNetwork |
|
elif opt.backbone == 'grid': |
|
from nerf.network_grid import NeRFNetwork |
|
else: |
|
raise NotImplementedError(f'--backbone {opt.backbone} is not implemented!') |
|
|
|
print(opt) |
|
|
|
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') |
|
|
|
print(f'[INFO] loading models..') |
|
|
|
if opt.guidance == 'stable-diffusion': |
|
from nerf.sd import StableDiffusion |
|
guidance = StableDiffusion(device) |
|
elif opt.guidance == 'clip': |
|
from nerf.clip import CLIP |
|
guidance = CLIP(device) |
|
else: |
|
raise NotImplementedError(f'--guidance {opt.guidance} is not implemented.') |
|
|
|
train_loader = NeRFDataset(opt, device=device, type='train', H=opt.h, W=opt.w, size=100).dataloader() |
|
valid_loader = NeRFDataset(opt, device=device, type='val', H=opt.H, W=opt.W, size=5).dataloader() |
|
test_loader = NeRFDataset(opt, device=device, type='test', H=opt.H, W=opt.W, size=100).dataloader() |
|
|
|
print(f'[INFO] everything loaded!') |
|
|
|
trainer = None |
|
model = None |
|
|
|
|
|
|
|
with gr.Blocks(css=".gradio-container {max-width: 512px; margin: auto;}") as demo: |
|
|
|
|
|
gr.Markdown('[Stable-DreamFusion](https://github.com/ashawkey/stable-dreamfusion) Text-to-3D Example') |
|
|
|
|
|
prompt = gr.Textbox(label="Prompt", max_lines=1, value="a DSLR photo of a koi fish") |
|
iters = gr.Slider(label="Iters", minimum=1000, maximum=20000, value=5000, step=100) |
|
seed = gr.Slider(label="Seed", minimum=0, maximum=2147483647, step=1, randomize=True) |
|
button = gr.Button('Generate') |
|
|
|
|
|
image = gr.Image(label="image", visible=True) |
|
video = gr.Video(label="video", visible=False) |
|
logs = gr.Textbox(label="logging") |
|
|
|
|
|
def submit(text, iters, seed): |
|
|
|
global trainer, model |
|
|
|
|
|
opt.seed = seed |
|
opt.text = text |
|
opt.iters = iters |
|
|
|
seed_everything(seed) |
|
|
|
|
|
if trainer is not None: |
|
del model |
|
del trainer |
|
gc.collect() |
|
torch.cuda.empty_cache() |
|
print('[INFO] clean up!') |
|
|
|
|
|
model = NeRFNetwork(opt) |
|
optimizer = lambda model: torch.optim.Adam(model.get_params(opt.lr), betas=(0.9, 0.99), eps=1e-15) |
|
scheduler = lambda optimizer: optim.lr_scheduler.LambdaLR(optimizer, lambda iter: 0.1 ** min(iter / opt.iters, 1)) |
|
|
|
trainer = Trainer('df', opt, model, guidance, device=device, workspace=opt.workspace, optimizer=optimizer, ema_decay=0.95, fp16=opt.fp16, lr_scheduler=scheduler, use_checkpoint=opt.ckpt, eval_interval=opt.eval_interval, scheduler_update_every_step=True) |
|
|
|
|
|
STEPS = 8 |
|
max_epochs = np.ceil(opt.iters / STEPS).astype(np.int32) |
|
|
|
|
|
loader = iter(valid_loader) |
|
|
|
start_t = time.time() |
|
|
|
for epoch in range(max_epochs): |
|
|
|
trainer.train_gui(train_loader, step=STEPS) |
|
|
|
|
|
try: |
|
data = next(loader) |
|
except StopIteration: |
|
loader = iter(valid_loader) |
|
data = next(loader) |
|
|
|
trainer.model.eval() |
|
|
|
if trainer.ema is not None: |
|
trainer.ema.store() |
|
trainer.ema.copy_to() |
|
|
|
with torch.no_grad(): |
|
with torch.cuda.amp.autocast(enabled=trainer.fp16): |
|
preds, preds_depth = trainer.test_step(data, perturb=False) |
|
|
|
if trainer.ema is not None: |
|
trainer.ema.restore() |
|
|
|
pred = preds[0].detach().cpu().numpy() |
|
|
|
|
|
pred = (pred * 255).astype(np.uint8) |
|
|
|
yield { |
|
image: gr.update(value=pred, visible=True), |
|
video: gr.update(visible=False), |
|
logs: f"training iters: {epoch * STEPS} / {iters}, lr: {trainer.optimizer.param_groups[0]['lr']:.6f}", |
|
} |
|
|
|
|
|
|
|
trainer.test(test_loader) |
|
|
|
results = glob.glob(os.path.join(opt.workspace, 'results', '*rgb*.mp4')) |
|
assert results is not None, "cannot retrieve results!" |
|
results.sort(key=lambda x: os.path.getmtime(x)) |
|
|
|
end_t = time.time() |
|
|
|
yield { |
|
image: gr.update(visible=False), |
|
video: gr.update(value=results[-1], visible=True), |
|
logs: f"Generation Finished in {(end_t - start_t)/ 60:.4f} minutes!", |
|
} |
|
|
|
|
|
button.click( |
|
submit, |
|
[prompt, iters, seed], |
|
[image, video, logs] |
|
) |
|
|
|
|
|
demo.queue(concurrency_count=1) |
|
|
|
demo.launch() |