YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/model-cards#model-card-metadata)

same architecture with timm/vit_large_patch14_dinov2.lvd142m

git clone https://github.com/microsoft/MoGe.git
cd MoGe

translate

import torch
from moge.model import MoGeModel

device = torch.device("cuda")
model = MoGeModel.from_pretrained("Ruicheng/moge-vitl").to(device)

# -------------------
backbone_state_dict = model.backbone.state_dict()
filtered_state_dict = {k: v for k, v in backbone_state_dict.items() if 'mask_token' not in k}
torch.save(filtered_state_dict, "pytorch_model.bin")
# -------------------

usage

from urllib.request import urlopen
from PIL import Image
import timm

img = Image.open(urlopen(
    'https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/beignets-task-guide.png'
))

model = timm.create_model(
    'hf_hub:WeiChow/moge_l_vit',
    pretrained=True,
    num_classes=0,  # remove classifier nn.Linear
)

# for name, param in model.named_parameters():
#     print(f"Parameter: {name} - Size: {param.size()} - Total Elements: {param.numel()}")
model = model.eval()

# get model specific transforms (normalization, resize)
data_config = timm.data.resolve_model_data_config(model)
transforms = timm.data.create_transform(**data_config, is_training=False)

output = model(transforms(img).unsqueeze(0))  # output is (batch_size, num_features) shaped tensor

# or equivalently (without needing to set num_classes=0)

output = model.forward_features(transforms(img).unsqueeze(0))
# output is unpooled, a (1, 1374, 1024) shaped tensor

output = model.forward_head(output, pre_logits=True)
print(output)

Copyright saved.

Downloads last month
19
Inference Providers NEW
This model is not currently available via any of the supported Inference Providers.
The model cannot be deployed to the HF Inference API: The model has no library tag.

Collection including WeiChow/moge_l_vit