llama3-dpo-lora / README.md
Wenboz's picture
End of training
030e5d2 verified
|
raw
history blame
3.73 kB
metadata
base_model: princeton-nlp/Llama-3-Base-8B-SFT
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: llama3-dpo-lora
    results: []

llama3-dpo-lora

This model is a fine-tuned version of princeton-nlp/Llama-3-Base-8B-SFT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5193
  • Rewards/chosen: 0.0154
  • Rewards/rejected: -0.7979
  • Rewards/accuracies: 0.7280
  • Rewards/margins: 0.8133
  • Logps/rejected: -284.6558
  • Logps/chosen: -292.3936
  • Logits/rejected: -0.3843
  • Logits/chosen: -0.4157

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logits/rejected Logits/chosen
0.6275 0.1047 100 0.6122 0.2594 -0.0099 0.6920 0.2693 -276.7753 -289.9533 -0.5582 -0.5619
0.5726 0.2094 200 0.5529 -0.0787 -0.6353 0.7040 0.5565 -283.0293 -293.3344 -0.5103 -0.5266
0.5429 0.3141 300 0.5380 -0.1730 -0.8455 0.7260 0.6725 -285.1317 -294.2773 -0.4689 -0.4910
0.5054 0.4187 400 0.5332 -0.0870 -0.8469 0.7240 0.7599 -285.1459 -293.4173 -0.4261 -0.4535
0.5508 0.5234 500 0.5267 -0.0207 -0.8088 0.7180 0.7881 -284.7646 -292.7540 -0.4045 -0.4335
0.5338 0.6281 600 0.5263 0.1981 -0.5901 0.7300 0.7882 -282.5771 -290.5659 -0.4002 -0.4304
0.5064 0.7328 700 0.5175 -0.2007 -1.0076 0.7300 0.8068 -286.7521 -294.5546 -0.3761 -0.4080
0.5349 0.8375 800 0.5197 0.0149 -0.7896 0.7200 0.8045 -284.5727 -292.3984 -0.3853 -0.4161
0.4775 0.9422 900 0.5181 0.0150 -0.7988 0.7260 0.8139 -284.6649 -292.3968 -0.3842 -0.4151

Framework versions

  • PEFT 0.7.1
  • Transformers 4.44.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1