llama3-wpo-lora / README.md
Wenboz's picture
End of training
d36de50 verified
|
raw
history blame
3.99 kB
metadata
base_model: princeton-nlp/Llama-3-Base-8B-SFT
library_name: peft
tags:
  - alignment-handbook
  - trl
  - dpo
  - generated_from_trainer
model-index:
  - name: llama3-wpo-lora
    results: []

llama3-wpo-lora

This model is a fine-tuned version of princeton-nlp/Llama-3-Base-8B-SFT on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.5172
  • Rewards/chosen: -0.0494
  • Rewards/rejected: -0.9056
  • Rewards/accuracies: 0.7300
  • Rewards/margins: 0.8562
  • Logps/rejected: -285.7321
  • Logps/chosen: -293.0410
  • Logps/ref Response: -0.5364
  • Logits/rejected: -0.3074
  • Logits/chosen: -0.3445

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 4
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • gradient_accumulation_steps: 16
  • total_train_batch_size: 64
  • total_eval_batch_size: 16
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss Rewards/chosen Rewards/rejected Rewards/accuracies Rewards/margins Logps/rejected Logps/chosen Logps/ref Response Logits/rejected Logits/chosen
0.6142 0.1047 100 0.5973 0.2024 -0.1309 0.7020 0.3333 -277.9861 -290.5232 -0.5364 -0.5487 -0.5543
0.5579 0.2094 200 0.5483 -0.0751 -0.7065 0.7120 0.6313 -283.7411 -293.2985 -0.5364 -0.4847 -0.5042
0.5402 0.3141 300 0.5354 -0.1318 -0.8578 0.7260 0.7260 -285.2545 -293.8653 -0.5364 -0.4387 -0.4637
0.5112 0.4187 400 0.5277 -0.1698 -0.9670 0.7220 0.7973 -286.3469 -294.2450 -0.5364 -0.3715 -0.4030
0.5319 0.5234 500 0.5212 -0.1546 -0.9783 0.7260 0.8237 -286.4595 -294.0932 -0.5364 -0.3377 -0.3727
0.5155 0.6281 600 0.5195 -0.0851 -0.9285 0.7360 0.8434 -285.9612 -293.3980 -0.5364 -0.3247 -0.3608
0.5113 0.7328 700 0.5173 -0.1941 -1.0489 0.7340 0.8547 -287.1652 -294.4885 -0.5364 -0.3036 -0.3411
0.5268 0.8375 800 0.5177 -0.0457 -0.9023 0.7220 0.8566 -285.7000 -293.0044 -0.5364 -0.3082 -0.3453
0.4923 0.9422 900 0.5175 -0.0517 -0.9092 0.7280 0.8575 -285.7691 -293.0645 -0.5364 -0.3072 -0.3443

Framework versions

  • PEFT 0.7.1
  • Transformers 4.44.2
  • Pytorch 2.2.1+cu121
  • Datasets 2.14.6
  • Tokenizers 0.19.1