metadata
base_model: princeton-nlp/Llama-3-Base-8B-SFT
library_name: peft
tags:
- alignment-handbook
- trl
- dpo
- generated_from_trainer
model-index:
- name: llama3-wpo-lora
results: []
llama3-wpo-lora
This model is a fine-tuned version of princeton-nlp/Llama-3-Base-8B-SFT on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.5172
- Rewards/chosen: -0.0494
- Rewards/rejected: -0.9056
- Rewards/accuracies: 0.7300
- Rewards/margins: 0.8562
- Logps/rejected: -285.7321
- Logps/chosen: -293.0410
- Logps/ref Response: -0.5364
- Logits/rejected: -0.3074
- Logits/chosen: -0.3445
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 1
- eval_batch_size: 4
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- gradient_accumulation_steps: 16
- total_train_batch_size: 64
- total_eval_batch_size: 16
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: cosine
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 1
Training results
Training Loss | Epoch | Step | Validation Loss | Rewards/chosen | Rewards/rejected | Rewards/accuracies | Rewards/margins | Logps/rejected | Logps/chosen | Logps/ref Response | Logits/rejected | Logits/chosen |
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.6142 | 0.1047 | 100 | 0.5973 | 0.2024 | -0.1309 | 0.7020 | 0.3333 | -277.9861 | -290.5232 | -0.5364 | -0.5487 | -0.5543 |
0.5579 | 0.2094 | 200 | 0.5483 | -0.0751 | -0.7065 | 0.7120 | 0.6313 | -283.7411 | -293.2985 | -0.5364 | -0.4847 | -0.5042 |
0.5402 | 0.3141 | 300 | 0.5354 | -0.1318 | -0.8578 | 0.7260 | 0.7260 | -285.2545 | -293.8653 | -0.5364 | -0.4387 | -0.4637 |
0.5112 | 0.4187 | 400 | 0.5277 | -0.1698 | -0.9670 | 0.7220 | 0.7973 | -286.3469 | -294.2450 | -0.5364 | -0.3715 | -0.4030 |
0.5319 | 0.5234 | 500 | 0.5212 | -0.1546 | -0.9783 | 0.7260 | 0.8237 | -286.4595 | -294.0932 | -0.5364 | -0.3377 | -0.3727 |
0.5155 | 0.6281 | 600 | 0.5195 | -0.0851 | -0.9285 | 0.7360 | 0.8434 | -285.9612 | -293.3980 | -0.5364 | -0.3247 | -0.3608 |
0.5113 | 0.7328 | 700 | 0.5173 | -0.1941 | -1.0489 | 0.7340 | 0.8547 | -287.1652 | -294.4885 | -0.5364 | -0.3036 | -0.3411 |
0.5268 | 0.8375 | 800 | 0.5177 | -0.0457 | -0.9023 | 0.7220 | 0.8566 | -285.7000 | -293.0044 | -0.5364 | -0.3082 | -0.3453 |
0.4923 | 0.9422 | 900 | 0.5175 | -0.0517 | -0.9092 | 0.7280 | 0.8575 | -285.7691 | -293.0645 | -0.5364 | -0.3072 | -0.3443 |
Framework versions
- PEFT 0.7.1
- Transformers 4.44.2
- Pytorch 2.2.1+cu121
- Datasets 2.14.6
- Tokenizers 0.19.1