Einstein-7B / README.md
leaderboard-pr-bot's picture
Adding Evaluation Results
ea01e64 verified
|
raw
history blame
8.04 kB
metadata
license: other
tags:
  - axolotl
  - generated_from_trainer
datasets:
  - allenai/ai2_arc
  - camel-ai/physics
  - camel-ai/chemistry
  - camel-ai/biology
  - metaeval/reclor
  - openbookqa
  - mandyyyyii/scibench
  - derek-thomas/ScienceQA
  - wenhu/TheoremQA
  - TIGER-Lab/ScienceEval
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: Einstein-7B
    results:
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: AI2 Reasoning Challenge (25-Shot)
          type: ai2_arc
          config: ARC-Challenge
          split: test
          args:
            num_few_shot: 25
        metrics:
          - type: acc_norm
            value: 61.6
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: HellaSwag (10-Shot)
          type: hellaswag
          split: validation
          args:
            num_few_shot: 10
        metrics:
          - type: acc_norm
            value: 84.35
            name: normalized accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: MMLU (5-Shot)
          type: cais/mmlu
          config: all
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 62.87
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: TruthfulQA (0-shot)
          type: truthful_qa
          config: multiple_choice
          split: validation
          args:
            num_few_shot: 0
        metrics:
          - type: mc2
            value: 42.55
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: Winogrande (5-shot)
          type: winogrande
          config: winogrande_xl
          split: validation
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 77.51
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-7B
          name: Open LLM Leaderboard
      - task:
          type: text-generation
          name: Text Generation
        dataset:
          name: GSM8k (5-shot)
          type: gsm8k
          config: main
          split: test
          args:
            num_few_shot: 5
        metrics:
          - type: acc
            value: 36.01
            name: accuracy
        source:
          url: >-
            https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=Weyaxi/Einstein-7B
          name: Open LLM Leaderboard

image/jpeg

🔬 Einstein-7B

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on datasets related to science.

This model is fine-tuned using QLoRa and axolotl.

This model's training was sponsored by sablo.ai.

See axolotl config

axolotl version: 0.3.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: true
strict: false

datasets:
  - path: sci-datasets/arc_challange_train_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_biology_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_chemistry_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/camelai_physics_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/openbookqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/reclor_science_alpaca.json
    ds_type: json
    type: alpaca
    
  - path: sci-datasets/scibench_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/scienceqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/theoremqa_alpaca.json
    ds_type: json
    type: alpaca

  - path: sci-datasets/tiger_scienceeval_alpaca.json
    ds_type: json
    type: alpaca

dataset_prepared_path: last_run_prepared
val_set_size: 0
output_dir: ./science-mistral

adapter: qlora
lora_model_dir:

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true

lora_r: 128
lora_alpha: 64
lora_dropout: 0.05
lora_target_linear: true
lora_fan_in_fan_out:
lora_target_modules:
  - gate_proj
  - down_proj
  - up_proj
  - q_proj
  - v_proj
  - k_proj
  - o_proj

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/science-mistral

# change #
gradient_accumulation_steps: 12
micro_batch_size: 6
num_epochs: 2
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002
# change #

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10


saves_per_epoch: 3
debug:
deepspeed:
weight_decay: 0.1
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "</s>"
  unk_token: "<unk>"

📊 Datasets

Following datasets were used in this model:

💬 Prompt Template

You can use this prompt template while using the model:

Alpaca

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.

### Instruction:
{instruction}

### Input:
{input}

### Response:

🤝 Acknowledgments

Thanks to Platypus for providing scripts to convert some of the datasets to Alpaca format: Platypus/data_pipeline

Thanks to all the dataset authors mentioned in the datasets section.

Thanks to axolotl for making the repository I used to make this model.

Built with Axolotl

If you would like to support me:

☕ Buy Me a Coffee

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 60.81
AI2 Reasoning Challenge (25-Shot) 61.60
HellaSwag (10-Shot) 84.35
MMLU (5-Shot) 62.87
TruthfulQA (0-shot) 42.55
Winogrande (5-shot) 77.51
GSM8k (5-shot) 36.01