Einstein-v2-7B / README.md
Weyaxi's picture
Adding Evaluation Results (#1)
479338a verified
metadata
license: apache-2.0
tags:
  - axolotl
  - generated_from_trainer
base_model: mistralai/Mistral-7B-v0.1
model-index:
  - name: einstein-v2-test-model
    results: []

image/jpeg

Version 2 of Weyaxi/Einstein-7B

Built with Axolotl

See axolotl config

axolotl version: 0.4.0

base_model: mistralai/Mistral-7B-v0.1
model_type: MistralForCausalLM
tokenizer_type: LlamaTokenizer
is_mistral_derived_model: true

load_in_8bit: false
load_in_4bit: false
strict: false

datasets:
  - path: merged_all.json
    ds_type: json
    type: alpaca
    conversation: chatml

dataset_prepared_path: last_run_prepared
val_set_size: 0.005
output_dir: ./einstein-v2-test-model

sequence_len: 8192
sample_packing: true
pad_to_sequence_len: true
eval_sample_packing: false

wandb_project: huggingface
wandb_entity:
wandb_watch:
wandb_name:
wandb_log_model:
hub_model_id: Weyaxi/einstein-v2-test-model

save_safetensors: true

gradient_accumulation_steps: 4
micro_batch_size: 1
num_epochs: 1
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.000005

train_on_inputs: false
group_by_length: false
bf16: true
fp16: false
tf32: false

gradient_checkpointing: true
early_stopping_patience:
resume_from_checkpoint:
local_rank:
logging_steps: 1
xformers_attention:
flash_attention: true

warmup_steps: 10
evals_per_epoch: 4  
eval_table_size:
eval_table_max_new_tokens: 128
saves_per_epoch: 2
debug:

deepspeed: zero3_bf16.json
weight_decay: 0.0
fsdp:
fsdp_config:
special_tokens:
  bos_token: "<s>"
  eos_token: "<|im_end|>"
  unk_token: "<unk>"
tokens:
  - "<|im_start|>"

einstein-v2-test-model

This model is a fine-tuned version of mistralai/Mistral-7B-v0.1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 1.3838

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-06
  • train_batch_size: 1
  • eval_batch_size: 1
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 8
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 8
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • num_epochs: 1

Training results

Training Loss Epoch Step Validation Loss
1.0376 0.0 1 1.9459
0.5117 0.25 59 1.4740
0.5293 0.5 118 1.4116
0.5243 0.76 177 1.3838

Framework versions

  • Transformers 4.38.0.dev0
  • Pytorch 2.1.2+cu118
  • Datasets 2.16.1
  • Tokenizers 0.15.0

Open LLM Leaderboard Evaluation Results

Detailed results can be found here

Metric Value
Avg. 63.48
AI2 Reasoning Challenge (25-Shot) 62.37
HellaSwag (10-Shot) 83.46
MMLU (5-Shot) 62.08
TruthfulQA (0-shot) 50.52
Winogrande (5-shot) 79.32
GSM8k (5-shot) 43.14